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ABSTRACT
Browser-based defenses have recently been advocated as an
effective mechanism to protect web applications against the
threats of session hijacking, fixation, and related attacks.
In existing approaches, all such defenses ultimately rely on
client-side heuristics to automatically detect cookies con-
taining session information, to then protect them against
theft or otherwise unintended use. While clearly crucial to
the effectiveness of the resulting defense mechanisms, these
heuristics have not, as yet, undergone any rigorous assess-
ment of their adequacy. In this paper, we conduct the first
such formal assessment, based on a gold set of cookies we col-
lect from 70 popular websites of the Alexa ranking. To ob-
tain the gold set, we devise a semi-automatic procedure that
draws on a novel notion of authentication token, which we in-
troduce to capture multiple web authentication schemes. We
test existing browser-based defenses in the literature against
our gold set, unveiling several pitfalls both in the heuris-
tics adopted and in the methods used to assess them. We
then propose a new detection method based on supervised
learning, where our gold set is used to train a binary classi-
fier, and report on experimental evidence that our method
outperforms existing proposals. Interestingly, the resulting
classification, together with our hands-on experience in the
construction of the gold set, provides new insight on how
web authentication is implemented in practice.
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1. INTRODUCTION
Both HTTP and its secure variant HTTPS, the workhorse

protocols of the current World Wide Web, are stateless by
design, hence require web servers to implement their own au-
thentication mechanisms to keep track of state information
across different HTTP(S) requests. The most widespread
solution for tracking state on HTTP(S) relies on cookies,
i.e., key-value pairs which are chosen by the server so as
to identify the user’s browser and sent to it. The browser
will automatically attach the cookies to any subsequent re-
quest to the server: upon receiving back the cookies, the
server may use them to pinpoint the requesting client across
multiple requests, thus effectively implementing a stateful
communication over a stateless protocol.

Modern web applications are complex, and operating with
them involves highly structured interactions (sessions), of-
ten requesting users to present their credentials to log in
and authenticate. Correspondingly, the sets of cookies ex-
changed along such sessions are just as structured and in-
clude cookies registered for a variety of purposes: among
these, of specific interest for our present concerns are the
cookies registered in response to the user presenting her cre-
dentials, which we call authentication cookies1.

Authentication cookies are widespread, as they conveniently
act as substitutes for the user’s credentials during an authen-
ticated session. At the same time (and for the very same rea-
sons), they constitute a primary target of attack, since their
inadvertent disclosure allows an intruder to fully imperson-
ate the user and exploit her privileges in the authenticated
session. The complexity of web applications makes room for
a large surface of attack against authentication cookies, re-
quiring web servers to deploy a variety of counter-measures
to achieve a satisfactory degree of protection. Unfortunately,
as reported in the literature, websites often fail to implement
such measures correctly [30, 18].

A complementary line of defense, advocated in a series
of recent papers, may be built directly within the browser
through client-side protection mechanisms [28, 24, 23, 6].
The key idea underlying such mechanisms is to apply the
security practices neglected by the server by detecting au-
thentication cookies at the client-side, and enforcing a more
conservative browser behavior when accessing them. This
process ultimately hinges on an authentication cookie detec-
tor, i.e., a heuristics which tries to automatically identify
the cookies associated with the user credentials among all

1In Section 3, we define the notion of authentication cookies for-
mally, and make it far more accurate. At this stage, however, the
informal characterization given here suffices.
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the cookies stored in the browser, with no support by the
user or the remote server. The challenge here is to strike
a good balance between security and usability. On the one
hand (security) such detector should not miss any authenti-
cation cookie, as any miss may leave room for attacks. At
the same time (usability), they should not over-approximate
the real set of authentication cookies, since the conserva-
tive security policy applied for them may negatively impact
on the user experience. For example, if a security policy
aimed at thwarting XSS attacks stipulates that authentica-
tion cookies should not be accessed through JavaScript, then
any legitimate access to a cookie storing the user’s prefer-
ences will be forbidden.

Somewhat surprisingly, in spite of their fundamental im-
pact on the effectiveness of the resulting defense mecha-
nisms, none of the heuristics adopted in current systems
has, as yet, undergone any rigorous assessment of its ade-
quacy. In fact, existing detectors have so far been evaluated
on the basis of intuitive claims assumed as ground truth in
the evaluation phase (e.g., any cookie whose value is suffi-
ciently long and random is likely used for authentication).
Reasonable as they might appear, such claims are obviously
biased and, as we show in this paper, hardly adequate for
quality assessment.

Contributions.
Our first contribution is the design of a (semi-)automatic

method to build a gold set of authentication cookies, i.e.,
a verified dataset where authentication cookies are isolated
and identified correctly. The outcome of this process is a
real-world dataset derived from a sample of 70 amongst the
today’s most popular websites of the Alexa ranking, which
we make available for public download2. Interestingly, our
experience in the construction of the gold set has unveiled a
number of subtleties in the actual role that different cookies
play in web authentication, which appear to have largely
been overlooked in the past. Based on that experience, we
devise a new notion of authentication token, which captures
multiple web authentication schemes and nicely fits different
real-world situations.

Our second contribution is a rigorous evaluation of four
existing authentication cookie detectors, conducted against
the gold set we constructed. Our analysis shows a signif-
icant degree of misclassification in these detectors, which
correspondingly hinders the effectiveness of the client-side
defenses built on top of them. Even worse, our data show
that the assessment of the existing heuristics is often coarse
and ultimately too optimistic, providing a false sense of se-
curity. By a manual inspection of our gold set, we conclude
that all the authentication cookie detectors proposed so far
are too näıve to be effective in practice.

Our third contribution is, then, the development of a bi-
nary classifier aimed at automatically and accurately iden-
tifying authentication cookies, based on supervised learning
techniques. We provide experimental evidence that our pro-
posal outperforms existing solutions, realigning the actual
effectiveness of client-side defenses for cookie-based sessions
with the optimistic estimations we just mentioned.

The rest of the paper is organized as follows. Section
2 provides background about cookie-based session security.
Section 3 describes the gold set construction. Section 4

2
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presents a formal evaluation of existing authentication cookie
detectors. Section 5 describes the design of the classifier and
contrasts its performance against the state of the art. Sec-
tion 6 reports on related work, and Section 7 concludes.

2. BACKGROUND: SESSION SECURITY

2.1 Cross-site Scripting (XSS)
Web browsers prevent cookies registered by a given do-

main from being accessed by scripts running on behalf of a
different domain, according to the so-called same-origin pol-
icy. Unfortunately, this simple protection mechanism can
be easily circumvented by code injection attacks like XSS,
whereby a script crafted by the attacker runs in the security
context of a trusted website [9]. The script is thus allowed
to read the authentication cookie value and disclose it to the
attacker, thus allowing him to hijack the user’s session.

Since XSS attacks are widespread today, web servers can
employ the HTTP-Only flag to qualify cookies which should
not be made available to client-side scripts: HTTP-Only cook-
ies will only be accessed by the browser when transmitting
HTTP(S) requests to the domain which registered them. A
few research works suggest to automatically apply the HTTP-
Only flag to authentication cookies when the remote server
fails to protect them [28, 18, 6].

2.2 Eavesdropping
Standard web browsers attach all the cookies registered

by a given domain to any HTTP(S) request transmitted to
that domain. Thus, whenever a page loaded over HTTPS
retrieves additional contents (e.g., an image) through an
HTTP connection to the same domain, authentication cook-
ies are leaked over HTTP to any attacker who is able to
eavesdrop the unencrypted web traffic [13].

The Secure flag can be used by a web server to designate
a cookie that should only be sent over HTTPS connections
and never be attached to HTTP requests. Similarly to the
HTTP-Only flag, the Secure flag can be selectively applied
to authentication cookies at the client-side, thus achieving
additional protection against powerful network attackers [6].

2.3 Session Fixation
In a session fixation attack, the attacker is able to des-

ignate (e.g., through a script) the value of the authentica-
tion cookie which will identify the user’s session [14]. The
attacker can then impersonate the user after she has per-
formed the required authentication steps, e.g., by submit-
ting her credentials to the website. Notice that in a session
fixation the authentication cookie is never leaked to the at-
tacker (the attacker knows it in advance), hence the previous
protection mechanisms are clearly bound to fail.

A typical server-side solution against session fixation at-
tacks is to require the generation of a fresh authentication
cookie whenever the privilege level of the session changes,
e.g., after the user has authenticated to the website: since
the new cookie will differ from the fixated one, the attacker
will not be able to hijack the session. If the server does
not implement this simple recommended practice, the attack
surface for session fixation can still be significantly reduced
at the client-side, by requiring that authentication cookies
attached to HTTP(S) requests are only registered through
HTTP(S) headers [24].
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3. A GOLD SET OF COOKIES
Building a gold set of cookies consists of two steps: (i) col-

lecting sets of cookies from different websites, and (ii) mark-
ing each cookie with a binary label to identify the cookie
as an authentication cookie or not. Step (i) has already
been recognized as a tedious manual process, which requires
one to possess personal accounts on the websites of interest,
and authenticate to their private areas [28]. Step (ii), in-
stead, has been largely overlooked by prior research, while
our hands-on experience with web authentication unveils a
number of subtle challenges which deserve attention. To
tackle these challenges, we introduce the novel concept of
authentication token, which captures the web authentication
schemes adopted by different websites.

3.1 Authentication Tokens
The concept of authentication token is best introduced

with an example. As anyone possessing a Facebook account
can easily verify, Facebook registers several cookies on the
user’s browser, for a variety of purposes. From our experi-
ence, the only effective way to understand the role of such
cookies, and in particular their role in Facebook’s authen-
tication mechanism, is to log into the website and observe
the effects of deleting the cookies, one by one. Doing that,
one notices that deleting either of the cookies c_user and
xs is enough to break the session and get logged out; on the
other hand, deleting any cookie other than c_user and xs

has no effect on the authenticated session. In other words,
both c_user and xs convey authentication, but neither is
enough to authenticate the user. The set {c_user, xs} may
thus be identified as the authentication token for Facebook,
and c_user and xs be referred to as authentication cookies.

Generalizing over the Facebook case, we define an authen-
tication token as a minimal set of cookies which allows the
server to authenticate the client, restoring the state of the
associated user without asking her to log in again.

Definition 3.1 (Authentication Token). Let S be
a server and C the set of cookies it sends to the browser B
upon login. We say that A ⊆ C is an authentication token
for S if and only if the following conditions hold:

(i) authentication: S authenticates B for any request in-
cluding all the cookies in A;

(ii) minimality: S does not authenticate B for any request
including only cookies in A′ ⊂ A.

A cookie c is an authentication cookie iff there exists an
authentication token A such that c ∈ A.

Notice that, according to this definition, websites may
designate multiple (possibly overlapping) authentication to-
kens. Indeed, we observed several examples of such authenti-
cation scheme in our investigation. For instance, the popular
file sharing service Bitshare registers two cookies PHPSES-

SID and login on the user’s browser, and any of the two is
enough to authenticate the user with the website: according
to our terminology, the website designates two authentica-
tion tokens of size 1.

The notion of authentication token is also useful to eval-
uate the robustness of a given web authentication scheme.

Definition 3.2 (Vulnerability). An authentication
token A is vulnerable if and only if every cookie c ∈ A is
known to the attacker.

Accordingly, a client-side defense for cookie-based sessions
is effective whenever its underlying authentication cookie de-
tector is able to identify at least one authentication cookie
for each authentication token. If this minimal set of authen-
tication cookies is safeguarded, we are guaranteed that the
website is protected against any session hijacking attack.

3.2 Building the Gold Set
Let C = {c1, . . . cn} be the set of all the cookies that server

S sends to browser B upon login. To construct our gold set,
we need to identify a labeling function l : C 7−→ {0, 1} such
that l(ci) = 1 iff ci is an authentication cookie. Unfortu-
nately, discovering this function boils down to finding out all
the cookies included in the authentication tokens registered
by S. Since any subset of C can potentially be an authen-
tication token, and more tokens can occur in C, the search
space we have to consider to derive the labeling function l is
the powerset of C, whose cardinality is 2n, i.e., exponential
in the number of cookies.

Still, we can significantly improve the efficiency of the gold
set construction by designing a smarter visit and pruning
strategy of the search space. First, we observe that, if a
set of cookies A is an authentication token, then all its su-
persets authenticate as well, but they can be removed from
the search space since none of them can be an authenti-
cation token, due to the minimality condition dictated by
Definition 3.1. We also notice that, given a set of cookies
A ⊆ C such that S does not authenticate B, the same hap-
pens with any subset of A. This last property resembles the
anti-monotonicity of the frequent itemsets [3]: if an itemset
I is frequent in a transactional database, then any I ′ ⊂ I
is frequent as well. The Apriori algorithm [3] for mining
frequent itemsets exploits this property to reduce its expo-
nential search space, by exploring the candidate itemsets
from the smallest to the largest.

Similarly to Apriori, our solution (cf. Algorithm 1) itera-
tively generates and checks subsets of cookies of size k, for
k = [1, n]. We enumerate all the subsets of cookies from
the smallest to the largest, and as soon as we find a subset
that authenticates, that is surely an authentication token to
be returned, due to the minimality property of the tokens.
The set cand (k) denotes the collection of candidate cookies
of size k built by the algorithm. To generate cand (k), k > 1,
function Gen&Prune (line 12) exploits the anti-monotonicity
property as follows:

Gen&Prune(k, C,A) = {C(k) ⊆ C | @A ∈ A : A ⊂ C(k)},

where |C(k)| = k and A is the set of authentication tokens

mined so far (of size up to k − 1). For each C(k) ∈ cand (k),

function isAuthenticated (line 7) checks whether C(k) au-
thenticates B at S (see Section 3.3). Note that, by construc-

tion of cand (k), given C(k) ∈ cand (k), for all the subsets of
C(k) server S does not authenticate browser B. So, if C(k)

allows B to be authenticated by S, it is surely an authen-
tication token due to minimality, and thus can be added to
the set A of authentication tokens (line 8). The algorithm
stops when no candidate of size k is available.

Like Apriori, the worst-case time complexity of the algo-
rithm is still exponential in the number of cookies. Specif-
ically, this happens when the entire set of cookies C is the
only authentication token, and thus no candidate pruning
can occur. In our experiments we verified that this is very
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Algorithm 1: Detecting Authentication Tokens

Input : A set of cookies C = {c1, . . . , cn} sent by a
server S to the browser B upon login

Output: A set of authentication tokens A for S

1 begin
2 A ←− ∅;
3 k ←− 1;

4 cand (k) ←− {{c} | c ∈ C};
5 while cand (k) 6= ∅ do
6 foreach C(k) ∈ cand (k) do

7 if isAuthenticated(B,S,C(k)) then

8 A ←− A∪ {C(k)};
9 end

10 end
11 k ←− k + 1;

12 cand (k) ←− Gen&Prune(k, C,A);

13 end
14 return A;

15 end

unlikely, making the approach generally effective in guaran-
teeing a significant reduction of the search space.

The output of Algorithm 1 is the set of authentication
tokens A = {A1, . . . , Am} for the web server S. To build the
gold set of cookies for S, we can finally derive the labeling
function l : C 7−→ {0, 1}, where l(c) = 1 iff there exists
Aj ∈ A such that c ∈ Aj . We repeat the process for each
web server S of a given collection of web servers S to produce
the complete gold set G:

G =
⋃
S∈S

⋃
c∈CS

(c, l(c)),

where CS denotes the set of all the cookies that a server
S ∈ S sends to the browser.

3.3 Implementation and Assessment
We implemented our gold set construction algorithm in

Python, using the Mechanize library for stateful program-
matic web browsing [1]. The script takes as an input a list
of triples (w, u, p), where w is the URL of a website home-
page, u is a username registered on that website, and p is
the corresponding password. For any triple (w, u, p), the
script navigates to w, identifies the login form on the page,
and submits the credentials (u, p). If the login operation
succeeds, the script is given access to a set of cookies C
registered by w and applies Algorithm 1 to detect the au-
thentication cookies.

The check performed by isAuthenticated (line 8) is im-
plemented as follows. Given a candidate authentication to-
ken C(k), we send an HTTP(S) request to w including only

the cookies in C(k), and return a positive answer if either of
the following two conditions is true:

1. the response from w does not contain a login form;

2. the response from w contains the username u.

The rationale of this choice is based on the common practice
implemented by existing websites, which typically display a
login form when the user logs out, and/or include in their
pages the username associated with the ongoing session.

We used our script to crawl 70 popular websites from the
Alexa ranking, collecting a dataset of 327 cookies, includ-
ing 103 authentication cookies. We observe that 52 websites
(74.3%) only use one authentication token, while the remain-
ing 18 (25.7%) register two different tokens. We also no-
tice that a non-negligible fraction of the considered websites
(20.0%) employ authentication tokens of size larger than 1.

A few remarks are in order on our gold set. First, even
though we automated the construction, clearly one still must
possess a personal account on the considered websites, for
which the initial registration is inherently manual. Second,
the percentage of authentication cookies (and the number of
cookies itself) may look surprising when contrasted with the
experience of ordinary web surfing. In particular, browsers
typically store a far larger number of cookies per website,
but only relatively few of them are used for authentication.
This gap is readily explained, since the Mechanize library
does not interpret JavaScript, which is a significant source
of the cookies generated for each website. We believe (as
per previous studies [24, 28]) that authentication cookies
are very rarely set via JavaScript.

To check the correctness of our implementation and val-
idate the gold set, we accessed all the considered websites
from a browser and we manually assessed the output of the
script. Specifically, given a set of cookies C stored in the
browser and an authentication token A ⊆ C identified by
our script, we verified that deleting all the cookies in C \ A
did not break the session, while removing any cookie in A
was enough to get logged out from the website. We noticed
that the script was very effective in practice, providing in-
correct answers only for 2 of the 70 websites: both failures
were due to websites deviating from the expected behav-
ior assumed by our implementation of the isAuthenticated

check, and they were later fixed manually.

4. EVALUATING CLIENT-SIDE DEFENSES
In this section we assess the quality of state-of-the-art au-

thentication cookie detectors against our gold set. As we
report below, previous evaluations turn out to be way too
optimistic, leaving large room for improvement in the detec-
tion process.

4.1 Existing Solutions
We focus on the authentication cookie detectors proposed

by the following four solutions:

• SessionShield [18] is a proxy between the browser
and the network which aims at protecting cookie-based
sessions against XSS attacks by emulating the browser
behavior implemented for the HTTP-Only flag;

• Serene [24] is a client-side solution against session
fixation attacks. It applies a detection algorithm to
spot cookies which are likely used for authentication,
but have not been registered through HTTP headers.
Since these cookies can be potentially fixated by a ma-
licious script, they are stripped away from HTTP re-
quests and never used for authentication;

• CookiExt [6] is an extension for Google Chrome de-
signed to ensure the confidentiality of authentication
cookies against both XSS attacks and eavesdropping.
CookiExt selectively applies both the HTTP-Only and
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the Secure flag to authentication cookies, while forc-
ing a redirection from HTTP to HTTPS for supporting
websites;

• Zan [28] is an extension for the OP2 web browser
aimed at protecting legacy web applications against
different kinds of vulnerabilities. Notably, Zan tries
to automatically apply the HTTP-Only flag to authen-
tication cookies, to prevent their leakage via XSS.

All the authentication cookie detectors adopted by these
tools are based on a set of hand-coded rules, which rely on
the same empirical observation: authentication cookies are
typically longer and “more random” than other cookies, and
they often contain authentication-related words in their keys
(e.g., “sess”). Though the various tools differ in several as-
pects (for instance, randomness can be estimated in several
ways, and different weights and thresholds can be chosen
for the same feature), we abstract from the details here, and
just summarize the aspects that are most relevant to our
present needs. For any further information, we refer to the
original papers.

Table 1 provides an intuitive description of the checks
performed by each detector. Cookies are denoted by pairs
c = (k, v), and each detector is represented at the bottom of
the table as a boolean formula φ(c), which holds true if and
only if c is recognized as an authentication cookie.

4.2 (Re-)Evaluating Existing Detectors

4.2.1 Validity Measures
We implemented each of the four detectors in Table 1,

and we fed them with all the cookies in our gold set, to then
count the number of true positives (tp), true negatives (tn),
false positives (fp), and false negatives (fn) produced.

We refer to “positive” as any example in the gold set that
is labeled as an authentication cookie, while we use the term
“negative” for all the other examples. Hence, tp and tn rep-
resent cookies which the detector labels correctly, while fp
and fn correspond to mislabeled cookies. Specifically, fp/fn
are cookies that the detector labels as positive/negative but
in fact appear as negative/positive in the gold set.

For each detector, we then computed two standard mea-
sures aimed at estimating its effectiveness:

specificity =
tn

tn + fp
sensitivity =

tp

tp + fn

Any authentication cookie detector having low specificity
typically over-approximates the real set of authentication
cookies, that is, it makes several fp errors and may lead to us-
ability problems, for instance by marking as HTTP-Only some
cookies which should be legitimately accessed by JavaScript.
Instead, any solution providing low sensitivity leans towards
under-approximating the real set of authentication cookies,
i.e., it makes many fn errors and leaves room for attacks.

Clearly, not every fp will lead to a usability problem in
practice and not every fn will correspond to a real security
violation: understanding these aspects ultimately depends
on the semantics of the specific client-side defense. However,
the measures above do provide conservative estimation of the
effects of deploying a new protection mechanism built over
a given authentication cookie detector: as such, we believe
it is very important to focus on them in the design phase of
new defensive solutions.

4.2.2 Criticisms to Previous Assessments
The assesment of existing authentication cookie detectors

has so far been organized around (i) the collection of a
dataset of cookies from existing websites, followed by (ii)
a manual investigation aimed at estimating the number of
fp and fn produced by the detector.

This approach suffers of two fundamental flaws. First,
and most importantly, the manual investigation is not car-
ried out by authenticating to the considered websites, but
rather by inspecting the structure of each cookie marked
positive (or negative) by the detector: misclassifications are
then estimated based on the expected syntactic structure of
a standard session identifier. For example, any cookie con-
taining a long random value which is marked negative by
the detector is considered a fn (the dual reasoning leads to
an estimate of the number of fp). Clearly, this approach
is convenient to carry out in practice, but provides a very
coarse and overly optimistic estimation, which is ultimately
biased by the idea of assessing the effectiveness of the detec-
tor against the very same observations underlying its design.

The second flaw in existing assessment methods is that,
in general, the number of fp and fn is not a statistically
significant measure of the performance of a detector, since
the distribution of the correctly labeled instances (tp and
tn) cannot be ignored [17]. Unfortunately, the lack of any
precise report about the number of tp and tn produced by
previous detectors prevented us from computing specificity
and sensitivity for existing evaluations, which is something
we would have liked to consider for further comparison.

4.2.3 Results of Our Own Assessment
We evaluate each of the four authentication cookie de-

tectors by constructing a corresponding confusion matrix.
This is a 2× 2 table, where tp and tn are given in the main
diagonal, while the antidiagonal contains fn and fp.

We start with the detector adopted by SessionShield,
whose confusion matrix is shown in Table 2.

Predicted

positive negative

Actual
positive tp: 95 fn: 8

negative fp: 105 tn: 119

Table 2: Confusion matrix for SessionShield

We notice that sensitivity is impressive (92%), since the
algorithm produces only 8 fn. On the other hand, specificity
is very low (53%), as 105 fp are produced by the detector
on our set of 327 cookies. This strongly conflicts with the
preliminary evaluation performed by the authors of Ses-
sionShield, who estimated only 19 fp in a set of 2167 col-
lected cookies: the difference between the informal estima-
tion above and the formal evaluation we conduct is of two
orders of magnitude. Interestingly, the authors of Serene
initially tried to reuse the authentication cookie detector
employed by SessionShield, but eventually realized they
needed a more accurate solution to deal with several usabil-
ity issues, due to a rather high number of fp identified in
practice [24]. Indeed, the detection algorithm of Session-
Shield appears too inaccurate to live up to any large-scale
usability study of a client-side defense based on it.
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Check Description Shield Serene CookiExt Zan

auth(k) k contains authentication-related terms (e.g., “sess”) 4 4 4 4

known(k) k is a standard session identifier name (e.g., PHPSESSID) 4

len(v) the length of v is above a given threshold 4 4 4 4

H(v) the Shannon entropy [26] of v is above a given threshold 4

IC(v) the index of coincidence [10] of v is below a given threshold 4

ρ(v) the password strength [8] of v is above a given threshold 4 4

dict(v) v matches a dictionary word 4 4

Shield(c) , (auth(k) ∧ len(v)) ∨ (ρ(v) ∨ ¬dict(v))

Serene(c) , known(k) ∨ (auth(k) ∧ ρ(v) ∧ ¬dict(v) ∧ len(v))

CookiExt(c) , auth(k) ∨ (IC(v) ∧ len(v))

Zan(c) , (auth(k) ∧ (H(v) ∨ len(v))) ∨ (¬auth(k) ∧H(v) ∧ len(v))

Table 1: Checks performed to label the cookie c = (k, v) as an authentication cookie

Next, we turn to Serene, whose confusion matrix is given
in Table 3 below.

Predicted

positive negative

Actual
positive tp: 48 fn: 55

negative fp: 37 tn: 187

Table 3: Confusion matrix for Serene

The number of fp decreases significantly (37 vs. 105) with
respect to the authentication cookie detector of Session-
Shield and the specificity greatly improves (83%). On the
other hand, we notice that only 48 out of 103 authentica-
tion cookies are successfully recognized, and the sensitivity
of the detector is really low (47%). We observe that the
55 fn are distributed on 44 different websites: if we assume
that all these cookies can be fixated by an attacker, we get
40 vulnerable authentication tokens (cf. Definition 3.2) on
40 different websites. Hence, Serene is effective at protect-
ing only 30 out of 70 websites (42.9%), which is far less than
the empirical estimate in the original paper (83.4%).

To be fair, we also evaluate CookiExt, a solution pro-
posed by two of the authors. Similarly to what happened
for the other proposals, our initial evaluation of CookiExt
provided some overly optimistic results. We report in Ta-
ble 4 the result of our later assessment against the gold set.

Predicted

positive negative

Actual
positive tp: 68 fn: 35

negative fp: 60 tn: 164

Table 4: Confusion matrix for CookiExt

The protection offered by CookiExt appears significantly
stronger than the previous one, since the number of fn pro-
duced by the detector is much lower (35 vs. 55) and sen-
sitivity increases (66%). Still, the degree of protection is
lower than our original estimate, and certainly needs im-
provement: indeed, our 35 fn occur in a set of 327 cookies,
while the informal estimate in the CookiExt paper identi-
fies only 29 potential fn in a much larger set of 2291 collected
cookies. Again, the difference is of one order of magnitude
and the impact on security is significant.

We conclude with Zan, whose confusion matrix is given
in Table 5.

Predicted

positive negative

Actual
positive tp: 58 fn: 45

negative fp: 37 tn: 187

Table 5: Confusion matrix for Zan

Again, we have a considerable number of fn, since 45 out
of 103 authentication cookies are misclassified, and the sen-
sitivity is unsatisfactory (56%). However, the original paper
on Zan does not consider the accuracy of the authentica-
tion cookie detector itself, rather it provides an evaluation
about the gain in protection enabled by the tool through
an analysis at the website level. In particular, the authors
state that 103 out of 136 considered websites (75.7%) are
successfully protected by Zan: all the 33 failures are due
to the underlying detection algorithm. To carry out a fair
comparison, we also focus on the websites rather than on
the cookies: we perform a manual review of the 45 fn above
and we identify 29 vulnerable authentication tokens in 29
different websites. Hence, we conclude that only 41 out of
70 considered websites (58.6%) are actually protected.

To conclude, we argue that the only authentication cookie
detector which presents a satisfactory sensitivity is the one
employed by SessionShield. Unfortunately, that detector
has very low specificity and is thus not fit for any practical
client-side defense. In all the other cases, instead, our eval-
uation highlights an unexpectedly low degree of protection.

5. IMPROVING CLIENT-SIDE DEFENSES
Given the inaccuracy of existing solutions, we leverage

machine learning techniques to devise a novel authentica-
tion cookie detector, which is able to provide a high degree
of protection, while being precise enough to be usable in
practice. We emphasize that the existence of such a de-
tector is not obvious at all, mainly due to a number of in-
consistencies across different websites, which make the au-
thentication cookie detection problem difficult to solve even
through manual inspection: this is exactly one of the reasons
why previous informal evaluations turned out to be impre-
cise and ultimately unreliable.
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5.1 A Supervised Learning Approach
We automatically build our detector by learning a binary

classifier from our trusted gold set of cookies. More specifi-
cally, for each cookie c in our gold set G we need to identify
an M -dimensional vector of features v(c) = (f1, . . . , fM ),
where each feature fi describes a particular aspect of the
cookie. Eventually, a tuple (v(c), l(c)) is associated with
each c ∈ G.

To properly learn a binary classifier, we need a training
set, i.e., a subset of the gold set containing both positive
and negative examples, which is used to infer a classifica-
tion model. The remaining labeled examples of the gold set
are used as test set, and are exploited to evaluate the per-
formance of the trained model. Finally, the binary classifier
derived from the training set is a function that maps the
feature vector v(c′) of an unknown cookie c′ to either a pos-
itive or negative class label. The evaluation of the classifier
is based on the corresponding confusion matrix.

Besides the availability of a reliable gold set, two main
issues have to be carefully addressed when designing any
supervised learning solution: the set of features to extract
from each object and the actual learning algorithm used for
inducing the classifier. Indeed, the features selected are cru-
cial for any classifier to be effective. Intuitively, the goal is to
identify highly distinctive object properties, which allow the
learned function to correctly discriminate between instances
belonging to one of the two classes. Moreover, there exist
several learning algorithms, each of which may perform well
or poorly, depending on the specific application task [5, 19].
Surely, there are many other aspects of the learning prob-
lem, which would deserve to be considered. In this paper
we limit our discussion to the fundamental concepts above,
and we refer to [29, 17] for any further detail.

5.2 Exploring Cookie Features
An important design choice we make is considering only

features which can be computed from the set of cookies reg-
istered by a given website through a single HTTP response.
This is the key to make the classifier work properly in prac-
tice, i.e., when it is included in a browser extension aimed
at protecting authentication cookies. We explore not only
well-known features that were already proposed in the lit-
erature (Section 5.2.1), but also a novel class of contextual
features (Section 5.2.2). We report on our most interest-
ing findings, by evaluating the capability of these features
to properly discriminate between authentication and non-
authentication cookies in our gold set.

5.2.1 Non-contextual Features
We first started by exploring the effectiveness of some fea-

tures illustrated in Table 1, and exploited by authentica-
tion cookie detectors already presented in the literature. All
these features are extracted from a single cookie c = (k, v),
without considering its “context”, i.e., other cookies regis-
tered by the same web server.

– known(k). Perhaps the most surprising evidence we got
from our investigation is that many cookies which comply
with standard naming conventions for authentication cook-
ies are not actually authentication cookies. For instance, it
is not true that all the cookies called PHPSESSID (the stan-
dard name adopted by PHP for authentication cookies [2])
are really used for authentication purposes. To conclude

this, we matched the cookie names occurring in our gold set
against an extensive list of 45 known standard names em-
ployed by Serene. We isolated 37 matching cookies over-
all: interestingly, only 21 of them were really authentication
cookies. We do not have any definite explanation about
this unexpected behavior, though we occasionally observed
that web developers generate random cookies through some
session management API of the underlying framework, and
then populate other cookies with these randomly generated
values to implement a custom authentication scheme. No-
tice that 82 out of 103 authentication cookies in our gold
set do not comply with standard naming conventions, which
confirms that many websites do not directly adopt existing
APIs for session management.

– len(v). We investigated whether the length of a cookie
value is useful to single out the authentication cookies. Fig-
ure 1(a) plots the distribution of the two classes of cookies
with respect to the length of their value (for presentation
purposes, we include in the plot only cookies whose value
length is at most 50, which approximately amount to the
80% of our gold set). We can confirm that most of the au-
thentication cookies are rather long as expected, in that their
values include at least 25 characters, even though we observe
that some authentication cookies are surprisingly short. We
performed a further investigation on these unexpected cases
and we noticed that most of them are confined into specific
websites, which rely on authentication tokens of size 2 to
track the requesting client. Typically, these authentication
tokens contain a (short) user identifier and a (longer) session
identifier, which is likely derived from the user’s password
and some random value.

– ρ(v), H(v), IC(v). We finally investigated which mea-
sure of randomness is more effective at detecting authen-
tication cookies. Here, the most interesting finding is re-
lated to the password strength measure ρ adopted by Ses-
sionShield. Let ρ(v) = length(v) · log2(alphabet(v)), where
alphabet(v) is a score based on the occurrence in v of lower
case letters, upper case letters, digits, and punctuation char-
acters [8]. We show the distribution of the two classes of
cookies with respect to the password strength of their value
in Figure 1(b) (for presentation purposes, we consider in the
plot only cookies whose value length is at least 25, which
include about the 86% of all the authentication cookies in
our gold set). The observation is that, though fairly long,
several authentication cookies are still penalized by the pass-
word strength measure, since they do not draw upon a large
alphabet of different symbols. Specifically, 53 out of 103 au-
thentication cookies only use one case of letters and digits.
It is interesting to notice also that, if we focus on the 84
non-authentication cookies whose value contains at least 25
characters, we find 54 cookies which use at least one case
of characters, digits and punctuation symbols. Overall, we
conclude that the password strength is not an effective fea-
ture to identify authentication cookies. As to the entropy H
and the index of coincidence IC, we observed that both of
them work quite well in practice, though we do not present
any plot of their distributions due to space constraints.

– exp date(c). A cookie can be assigned an expiration date
by the remote server, to instruct the browser to delete it
after a given time. Before we started our investigation, we
thought that authentication cookies typically had a rather
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Figure 1: Feature distributions over cookie classes

short expiration date, since using the same cookie for a large
time window ultimately weakens the session against hijack-
ing. Instead, we noticed that several authentication cook-
ies present a fairly late expiration date, as it is highlighted
by the distribution plotted in Figure 1(c). It seems that
different choices correspond to different web application se-
mantics: security-critical websites (e.g., Dropbox) typically
adopt authentication cookies with an early expiration date,
while websites with more relaxed security requirements (e.g.,
Twitter) often release authentication cookies which expire
much later, thus enhancing the experience of users who do
need to authenticate with the website far less frequently.

5.2.2 Novel Contextual Features
After a careful evaluation of existing proposals, we man-

ually inspected our gold set, trying to identify novel dis-
tinctive features useful for detecting authentication cookies.
Our key insight is that the Web is highly heterogeneous and
that, in general, features which are effective for a given web-
site are not necessarily adequate for another website. We
discovered, however, that considering the characteristics of
all the cookies C assigned by a given website, that is consid-
ering the “context” of a given cookie c ∈ C, we can assign
more discriminating features to c.

– tf -idf HTTP-Only(c, C). Consider cookies marked as HTTP-Only
and/or Secure. It would be tempting to conclude that all
these cookies are likely used for authentication, since they
are explicitly protected by web developers. On the other
hand, several studies highlight that the adoption of these
cookie flags is largely disregarded by existing websites [6,
30, 18]. We show in Figure 1(d) the distribution of our
two classes of cookies with respect to the presence of the

HTTP-Only flag3, which confirms the previous observation:
the flag should likely play a role for classification purposes,
but it does not provide a definite evidence of the cookie
being used for authentication. Interestingly, though, a man-
ual investigation of our gold set reveals that the usage of
the cookie flags follows several different patterns, which can
(and should) be effectively exploited to single out authen-
tication cookies: first, there are websites which explicitly
protect only cookies containing session information; then,
we have some high-security websites, e.g., Dropbox, which
protect all the cookies they register, irrespective of the na-
ture of their contents; and finally, we have several websites
which just completely ignore the adoption of the available
cookie protection mechanisms.

Intuitively, if a website registers a set of cookies, but only
one (or very few) of those is labeled as HTTP-Only, then that
cookie is likely used for authentication purposes. Instead,
if all the cookies (or no cookies at all) from the website are
labeled as HTTP-Only, the presence (or the absence) of the
flag should not play any significant role during classification.
Similar issues often arise in the area of information retrieval,
where the effectiveness of a retrieval system depends also on
accurately estimating the importance of words to each text
document within a corpus. This idea is typically captured
by the“term frequency-inverse document frequency”(tf -idf )
score [25], which increases proportionally to the number of
times a word appears in a document, but is penalized by the
frequency of the word in the whole corpus.

Specifically, let C = {c1, . . . , cn} be a set of cookies regis-
tered by a given website and let nh ≤ n be the number of

3The same analysis with similar results could be conducted on
the Secure flag.
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HTTP-Only cookies in C. We define the “term frequency” of
the HTTP-Only flag for a given cookie ci as:

tf HTTP-Only(ci) =

{
1 if ci is HTTP-Only

0 otherwise.

We then define the “inverse document frequency” of the
HTTP-Only flag with respect to the set C as:

idf HTTP-Only(C) = log2

(
n

nh + 1

)
.

According to the definition of tf -idf , we then compute:

tf -idf HTTP-Only(ci, C) = tf HTTP-Only(ci) · idf HTTP-Only(C).

In Figure 1(e) we show how HTTP-Only cookies distribute
over the measure above. The plot highlights that several au-
thentication cookies appear whenever tf -idf HTTP-Only is above
a given positive threshold (∼ 0.25).

– Zlength(c, C). We observed before that authentication cook-
ies typically contain rather long values. Still, two caveats
apply. First, the notion of “long” is inherently dependent
on the specific website; indeed, it would be much more
accurate to state that authentication cookies are usually
longer than any other cookie registered by the same website.
Second, we occasionally noticed some short authentication
cookies that contradict the previous observation. However,
we also discussed that these cookies are typically paired with
other, longer authentication cookies, and protecting the lat-
ter would be enough to safeguard the website, as long as this
allows for making all the authentication tokens invulnerable
(cf. Definition 3.2). Hence, reasoning at the website level
seems effective also to protect scenarios implementing the
authentication scheme discussed before, and we thus argue
to consider the Z-score [16] of the cookie length.

In general, given a feature of interest, the Z-score measures
the (signed) number of standard deviations an example is
above the mean of the population. Concretely, for each ci =
(ki, vi) in a set of cookies C registered by a given website,
this is computed as:

Zlength(ci, C) =
length(vi)− µC

σC
,

where µC and σC are the mean and the standard deviation
of the cookie lengths in C, respectively. We show the distri-
bution of the Z-score of the value length with respect to our
two classes of cookies in Figure 1(f).

5.3 Choosing the Best Classifier
A key issue when designing supervised learning algorithms

is that they should be able to find a tradeoff between bias
and variance [11]. Roughly speaking, this refers to the abil-
ity of a learning algorithm to flexibly fit other datasets than
the one on which it is trained (i.e., avoiding overfitting),
while being able to perform effectively at least on the train-
ing set (i.e., preventing underfitting). It is now widely recog-
nized that each algorithm has its own selective superiority,
being best for some but not all tasks [5, 19].

In this work, we use the Weka toolkit4, which is a col-
lection of the most popular machine learning algorithms, to
choose the best-performing binary classifier. The measures

4
http://www.cs.waikato.ac.nz/ml/weka/

of validity used to assess the performance of each classi-
fier are those we introduced in Section 4, namely specificity
and sensitivity. Concretely, we use the gold set of cook-
ies as described in Section 3 as our running dataset, and
the set of features summarized in Table 6 to represent each
cookie. Those include the most discriminating features dis-
cussed above as well as other two non-contextual features
which have proven useful for classification.

To avoid overfitting, we adopt a procedure known as k-fold
cross-validation [7], whereby the original dataset is randomly
partitioned into k equally-sized subsets: k − 1 subsets are
used as training data to learn a classification model, and the
remaining subset is retained as the validation data to test
it. The cross-validation process is repeated k times (folds),
with each of the k subsets used exactly once as the validation
data: the k results from the folds are then averaged to pro-
duce a single performance estimation. Instead of a purely
random partitioning of the dataset, we use a stratified 10-
fold cross-validation strategy, which ensures the same class
distributions in each fold as in the original dataset.

Eventually, we train several classifiers and the best per-
forming turns out to be the one which builds a functional
tree, henceforth referred to as FT. In a nutshell, this is a
classification tree where each inner node and/or leaf may
contain a test based on a combination (i.e., a function) of
multiple features, as opposed to traditional decision trees [4,
20], whose nodes represent tests on individual features.

5.4 Experimental Results
We start by showing the confusion matrix obtained from

FT and given in Table 7 below.

Predicted

positive negative

Actual
positive tp: 83 fn: 20

negative fp: 33 tn: 191

Table 7: Confusion matrix for FT

We immediately notice that our machine learning solution
performs significantly better than the examined hand-coded
heuristics, obtaining a remarkable trade-off between sensi-
tivity and specificity. Indeed, FT is able to limit the total
number of false negatives to 20, which in fact is only worse
than what is obtained by SessionShield, but is much bet-
ter than all the other approaches (no less than 35 false nega-
tives). The number of false positives evaluates to 33, which
is better than all the other four examined solutions; in par-
ticular, FT outperforms the detector employed by Session-
Shield in this respect, since the latter produced 105 false
positives in our dataset.

Overall, FT guarantees a high sensitivity (81%), which
implies that it ensures a strong level of protection. At the
same time, the specificity of our approach is very satisfac-
tory (85%) and thus we argue that our classifier could be
deployed inside a browser-based defensive solution without
sacrificing the user experience. To summarize our results,
we plot in Figure 2 the specificity and the sensitivity of all
the examined solutions, as well as the F-measure, which pro-
vides a clear evidence of the improvement by combining the
two scores above through their harmonic mean.
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Feature Description Type Contextual

length(v) number of characters in v numeric

Zlength (c, C) the Z-score of length(v) with respect to C numeric 4

IC(v) the index of coincidence of v numeric

auth(k) k contains authentication-related terms (e.g., “sess”) boolean

http-only(c) c is flagged as HTTP-Only boolean

tf -idf HTTP-Only(c, C) the tf -idf of the HTTP-Only flag in c with respect to C numeric 4

secure(c) c is flagged as Secure boolean

tf -idf Secure(c, C) the tf -idf of the Secure flag in c with respect to C numeric 4

words(v) number of dictionary words in v numeric

path(c) the path of c is ’/’ boolean

timestamp(v) v contains a timestamp boolean

Table 6: Features used to classify the cookie c = (k, v) within the context C
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Figure 2: Performance evaluation

We conclude our experiments by performing an additional
evaluation at the website level, much as we did for the detec-
tor employed by Zan. We observe that the 20 false negatives
produced by FT are distributed inside 20 different authen-
tication cookies from 19 websites. Overall, we identify only
12 vulnerable authentication tokens in 11 different websites:
the improvement with respect to the detector employed by
Zan is impressive, since the latter left room for attacks in
29 websites: the protection increases from 58.6% to 84.3%
of the websites. Indeed, our classifier is very effective at pro-
tecting the authentication tokens of size 2 discussed in Sec-
tion 5.2.1, where one cookie contains the username and the
second one stores some password information. In particular,
we observe that cookies containing password information are
often correctly identified as authentication cookies by FT,
which is enough to protect the authentication token.

6. RELATED WORK
In Section 4 we have already conducted an in-depth dis-

cussion of various existing client-side defenses for cookie-
based sessions [6, 18, 24, 28]. Other browser-based protec-
tion mechanisms have also been proposed against different
web security threats, most notably CSRF attacks [22, 23,
15]. Simply put, the core idea underlying these solutions is

to strip all the cookies which would be attached to cross-site
HTTP(S) requests: we believe that these defenses could be
made less invasive and more usable by deploying them on
top of our classifier, to selectively remove from cross-origin
requests only the authentication cookies.

A recent research paper sharing interesting similarities
with our approach is [21]. The authors devise a taxonomy
for third-party trackers on the Web, based on their observ-
able behavior, and create a Firefox add-on called Tracking-
Tracker, which automatically classifies web trackers at the
client-side according to this taxonomy. The tool is used to
collect data about real-word third party trackers and design
more effective solutions to improve user’s privacy. Notably,
however, the classification process does not require machine
learning techniques, since it is easily accounted for by simple
checks on the browser-server interactions.

To the best of our knowledge, we are the first to lever-
age machine learning techniques to protect authentication
cookies. Machine learning approaches, however, have been
proposed in other areas of computer security, including in-
trusion detection systems [27] and spam filters [12].

7. CONCLUSION
We showed that existing authentication cookie detectors

perform much worse than expected when they are tested
against a gold set of authentication cookies, hence we con-
cluded that any browser-based defense built on top of them
is bound to provide an unsatisfactory level of protection.
We advocated the adoption of machine learning techniques
for the detection task and we showed a significant improve-
ment with respect to state-of-the-art solutions. Compared
to existing proposals, our solution provides a stronger de-
gree of protection, while being precise enough to be actually
deployed in practice.
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