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ABSTRACT
We estimate that nearly one third of news articles contain
references to future events. While this information can prove
crucial to understanding news stories and how events will
develop for a given topic, there is currently no easy way
to access this information. We propose a new task to ad-
dress the problem of retrieving and ranking sentences that
contain mentions to future events, which we call ranking
related news predictions. In this paper, we formally define
this task and propose a learning to rank approach based on
4 classes of features: term similarity, entity-based similarity,
topic similarity, and temporal similarity. Through extensive
evaluations using a corpus consisting of 1.8 millions news
articles and 6,000 manually judged relevance pairs, we show
that our approach is able to retrieve a significant number of
relevant predictions related to a given topic.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Perfor-
mance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Experimentation, Performance

Keywords
News predictions, Future events, Sentence retrieval and rank-
ing

1. INTRODUCTION
Predicting the future has long been the holy grail in the

financial world. The leaders of large organizations need to
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analyze information related to the future in order to iden-
tify the key challenges that can directly affect their organi-
zations. However, it is not just businesses that care about
the future - all people have anticipation and curiosity about
the future. Canton [8] describes the future trends that can
influence our lives, our jobs, our businesses, and even our
world. These include the energy crisis, the global financial
crisis, politics, health care, science, securities, globalization,
climate changes, and technologies. When people read news
stories on any of these topics whether it is an article about
war in the middle east or the latest health care plan, they are
naturally curious about potential future events. How long
will the war last? How much will it cost? What happens
if we do nothing at all? This obsession with the future is
also reflected in the news articles themselves - our analysis
of one year worth of news from over 100 sources indicates
that nearly one third of news articles contain at least one
statement made about a future date.

Accessing this information in an intuitive way would greatly
improve how people read and understand news. In this pa-
per, we define a new task we call ranking related news pre-
dictions that directly addresses this problem by finding all
predictions related to a news story in a news archive and
ranking them according to their relevance to the news story.
This task is motivated by the desire of news sites to in-
crease user engagement by providing content that directly
addresses the information needs of users. By providing links
to relevant content, new sites can keep users on their site
longer thus increasing the likelihood that users will click on
revenue generating links and also improving user satisfac-
tion. For a wide range of news events from natural disasters
to political unrest in the middle east, the information need
- the question most on people’s minds - is what is going to
happen next. This new task is a first step toward helping
people answer this very question by finding and linking to
predictions that are relevant to the user.

Our query is extracted from a news article currently read
by a user, and is composed of a bag of entities or terms.
Using an automatically-generated query, predictions are re-
trieved, ranked over the time dimension, and presented to
the user. Note that there are a number of future-related in-
formation analyzing tools including Recorded Future1, and
Time Explorer [22]. Recorded Future extracts predictions
from different sources (news publications, blogs, trade pub-
lications, government web sites, and financial databases). A
user creates a query by selecting a topic of interest (e.g. a
topic about“Financial Markets”), and then specifying an en-

1
https://www.recordedfuture.com/
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tity (people, companies, or organizations) from a set of “pre-
defined” entities. The system will then retrieve predictions
related to the selected topic and entity. A major difference
with our system is that Recorded Future requires a query
specified in advance, while our system automatically creates
a query for the user based on the news article being read
and it is not limited to “predefined” entities. Time Explorer
is a search engine that allows users to see how topics have
evolved over time and how they might continue to evolve in
the future. The system extracts predictions from document
collections and allows users to search for them using ad-hoc
queries. However, neither Time Explorer nor Recorded Fu-
ture provide details of how predictions are ranked nor do
they evaluate performance in a formal setting as we do here.

The main contributions of this paper are: 1) the first for-
malization of the ranking related news predictions task, 2) an
evaluation dataset with over 6000 relevance judgments from
the New York Times Annotated Corpus2 with queries that
are selected from real-world future trends [8] 3) a learned
ranking model incorporating four classes of features includ-
ing term similarity, entity-based similarity, topic similarity,
and temporal similarity 4) an in-depth analysis of feature se-
lection to guide further research in the ranking related news
predictions task.

The organization of the rest of the paper is as follows. In
Section 2, we explain our system architecture, and outline
the models for annotated documents, predictions as well as
queries. In Section 3, we propose four classes of features
used for learning a ranking model. In Section 4, we describe
our ranking model. In Section 5, we evaluate the proposed
ranking model. In Section 6, we give an overview of related
work. Finally, in Section 7, we conclude and outline future
work.

2. PROBLEM DEFINITION
In this section, we outline the system architecture, and

give the formalization of the models for annotated docu-
ments, predictions, and queries.

2.1 System Architecture
Figure 1 depicts our system which retrieves a set of predic-

tions (sentences containing future dates) related to a given
news article. Predictions can be extracted from a temporal
document collection – any collection that contains times-
tamped documents, e.g., personal emails, news archives,
company websites and blogs. In this work, we automat-
ically extract predictions from news archives using differ-
ent annotation tools. Our document annotation process in-
cludes tokenization, sentence extraction, part-of-speech tag-
ging, named entity recognition, and temporal expression ex-
traction. The result of this process is a set of sentences
annotated with named entities and temporal expressions,
which will be indexed as predictions for further processing
or retrieval.

A key component of the annotation process is the extrac-
tion of temporal expressions using a time and event recogni-
tion algorithm. The algorithm extracts temporal expressions
mentioned in a document and normalizes them to dates so
they can be anchored on a timeline. As explained in [1],
there are three types of temporal expressions: explicit, im-

2
http://www.ldc.upenn.edu/Catalog/docs/LDC2008T19/new_york_

times_annotated_corpus.pdf

Figure 1: Prediction retrieval system architecture.

plicit and relative. An explicit temporal expression men-
tioned in a document can be mapped directly to a time point
or interval, such as, dates or years on the Gregorian calendar.
For example, “July 04, 2010” or “January 01, 2011” are ex-
plicit temporal expressions. An implicit temporal expression
is given in a document as an imprecise time point or interval.
For example, “Independence Day 2010” or “New Year Day’s
2011” are implicit expressions that can be mapped to “July
04, 2010”or “January 01, 2011” respectively. A relative tem-
poral expression mentioned in a document can be resolved
to a time point or interval using a time reference - either an
explicit or implicit temporal expressions mentioned in a doc-
ument or the publication date of the document itself. For
example, the expressions “this Monday”or “next month” are
relative expressions which we map to exact dates using the
publication date of the document.

Instead of having an explicit information need provided,
we automatically generate a query. In this case, we assume
that the user’s information needs lie in the news article being
read by the user, and a query will be extracted from this
news article (further details are given in Section 2.4). For a
given news article, we retrieve predictions that are relevant
to the news article, that is, relevant sentences containing
future dates with respect to the publication date of the news
article being read.

Retrieved predictions are ranked by the degree of rele-
vance, where a prediction is “relevant” if it is future infor-
mation about the topics of the news article. Note that we
do not give any specific instructions about how the dates
involved are related to relevance. Nevertheless, we hypothe-
size that predictions extracted from more recent documents
are more relevant. In this paper, we use a machine learning
approach [20] for learning the ranking model of predictions.
This involves identifying different classes of features (see Sec-
tion 3) to measure the relevance of a prediction with respect
to the news article.

2.2 Annotated Document Model
Our document collection contains a number of news arti-

cles defined as C = {d1, . . . , dn}. We treat each news article
as a bag-of-words (an unordered list of terms, or features),
d = {w1, . . . , wn}. time(d) is a function given the creation
or publication date of d. Some of our proposed features
are extracted from annotated documents, which are defined
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Table 1: Example of a prediction with field/value
pairs.

Field Value

id 1136243 1
parent id 1136243
title Gore Pledges A Health Plan For Every Child
text Vice President Al Gore proposed today to

guarantee access to affordable health insurance
for all children by 2005, expanding on a pro-
gram enacted two years ago that he conceded
had had limited success so far.

context Mr. Gore acknowledged that the number of
Americans without health coverage had in-
creased steadily since he and President Clin-
ton took office.

entity Al Gore
future date 2005
pub date 1999/09/08

as follows. Each document d, has an associated annotated
document d̂, which will consist of three sets, d̂e, d̂t, d̂s: a
set of named entities d̂e = {e1, . . . , en}, where each entity
ei ∈ E and E is the complete set of entities (typed as per-
son, location, and organization) in the collection; a set of

annotated temporal expressions d̂t = {t1, . . . , tm} and a set

of sentences d̂s = {s1, . . . , sz}

2.3 Prediction Model
A prediction p can be viewed as a sentence containing

field/value pairs of annotation information and we define dp

as the parent document where p is extracted from. We de-
fine several fields for a prediction including id, parent id,
title, entity, future date, pub date, text, and con-

text. The field id specifies a prediction’s unique number,
parentid and title represent a unique number and the ti-
tle of dp respectively entity contains a set of annotated
entities pentity ⊂ d̂e, future date consists of “future” tem-
poral expressions pfuture annotated in p, pub date is the
publication date of the parent document dp and text is a
prediction’s text ptxt or the sentence of p. Note that each
prediction must contain at least one “future” temporal ex-
pression, that is, pfuture 6= ∅. In addition, we explicitly model
the context of the prediction pctx, represented by the field
context and defined as surrounding sentences of the main
sentence [6]. In our work, we define the context pctx as the
sentence immediately before and the one immediately after
ptxt. Table 1 contains an example of a prediction with its
field/value pairs.

2.4 Query Model
As mentioned earlier, a query q is automatically generated

from a news article being read dq; q is composed of two parts:
keywords qtext, and the time of query qtime. The keywords
qtext are extracted from dq in three ways resulting in three
different types of queries.

The first type of query is a bag of entities, noted as“entity
query” or QE where its qtext is composed of the top-m en-
tities (ranked by frequency) extracted from dq. Intuitively,
we want to know whether using only key entities frequently
mentioned in the news article can retrieve relevant predic-
tions with high precision or not. For example, given an ac-
tual document about “President Bush and the Iraq war”, we

extract QE with qtext = 〈George Bush, Iraq,America〉. At
retrieval time, qtext will be matched with the entity field of
the predictions.

The second query is denoted“term query”or QT where its
qtext is composed of top-n terms (ranked by term weighting,
i.e., TF-IDF) extracted from dq. QT is considered a bag of
terms important to both dq (locally) and the whole collec-
tion (globally). In contrast to the previous query type, QT

aims at retrieving predictions related to the topics of news
article, which can be represented as a set of informative
terms. As an example, the QT with qtext = 〈poll, bush,war, iraq〉
is extracted from the same document used in the QE exam-
ple above. In this case, qtext will be matched with the text

field of the predictions.
The last type is called “combined query” or QC where its

qtext is a combination of both top-m entities and top-n terms
formed by concatenating QE and QT . We discuss how we
select top-m and top-n in Section 5.

The last component of the query is the temporal criteria or
qtime used for retrieving predictions on the time dimension;
qtime is composed of two different time constraints. The first
constraint is specified in order to retrieve only predictions
that are future relative to the publication date of query’s
parent article, or time(dq). The second constraint indicates
that those predictions must belong to news articles pub-
lished before time(dq). Both time constraints will be repre-
sented using a time interval, i.e., [tb, te], where tb is a begin-
ning time point and te is an ending time point, and te > tb.
In all cases, the first constraint is (time(dq), tmax], and the
second constraint is [tmin, time(dq)], where (time(dq), tmax] =
[time(dq), tmax]−{time(dq)}, and tmax and tmin are the max-
imum time in the future and the minimum time in the past
respectively. At retrieval time, the first constraint will be
matched with the field future date of predictions, whereas
the second constraint will be matched with the field pub date

of predictions.

3. FEATURES
In this section, we present features used for learning a

ranking model for related news predictions. The model will
be described in Section 4. We propose several classes of fea-
tures to capture the similarity between a news article query
q and a prediction p, i.e., term similarity, entity-based simi-
larity, topic similarity, and temporal similarity. The detailed
description of each class will be given next.

3.1 Term Similarity
Since a prediction is defined with multiple fields, we em-

ploy the fielded searching provided with Apache Lucene search
engine. The first term similarity feature retScore is the de-
fault similarity scoring function3 of Lucene, which is a vari-
ation of the tf-idf weighting scheme.

A disadvantage of retScore is that it will not retrieve any
predictions that do not match the query terms. This is-
sue is exacerbated in sentence retrieval by the fact that we
have to retrieve short fragments of text which might refer to
the query terms using anaphora or other linguistic phenom-
ena. One technique to overcome this problem is to use query
expansion/reformulation using synonyms or different words
with very similar meanings. It has also been shown that

3
http://lucene.apache.org/java/2_9_3/api/core/org/apache/lucene/

search/Similarity.html

757



extending a sentence structure by its surrounding context
sentences and weighting them using a field aware ranking
function like bm25f consistently improves sentence retrieval
[6]. Therefore, rather than reformulating a query, we will
retrieve a prediction by looking at the context and title

fields, in addition to the text field. Thus, even if the text

field does not match exactly with a query term, p can receive
a score if either the context or title field match the query
term.

In our case, instead of weighting differently keyword matches
in the title or body of a Web-page, we assign a different im-
portance to matches in the sentence itself or its context.
The second term similarity feature bm25f can be computed
as follows.

bm25f(q, p, F ) =
X

wi∈q

weight(wi, p)

k1 + weight(wi, p)
· idf(wi)

weight(wi, p) =
X

f∈F

freq(wi, f) · boost(f)

(1 − bf ) + bf ·
lf

avlf

idf(wi) = log
NP − nwi + 0.5

nwi + 0.5

(1)

where lf is the field length, avlf is the average length for
a field f , bf is a constant related to the field length, k1 is
a free parameter and boost(f) is the boost factor applied
to a field f . NP is the total number of predictions and
nwi is the number of prediction containing wi, and F =
{text,context,title}. We discuss parameter settings in
Section 5.1.

3.2 Entity-based Similarity
This feature class is aimed at measuring the similarity

between q and p by measuring the similarity of the entities
they each contain. Note that, this class is only applicable
for a query consisting of entities, that is, QE and QC , and
it is ignored for QT . The first feature entitySim compares
a string similarity between the entities of q and pentity using
the Jaccard coefficient, which can be computed as follows.

entitySim(q, p) =
|q ∩ pentity|

|q ∪ pentity|
(2)

where pentity is a set of entities, |q ∩ pentity| and |q ∪ pentity|
are the size of intersection and union of entities of q and p.

Thus, the higher the overlap between the entities of a
prediction and the query, the higher the prediction will be
ranked for the query. We also want to rank predictions by us-
ing features that are commonly employed in an entity rank-
ing task. For example, an entity is relevant if it appears in
the title of a document, or it always occurs as a subject of
sentence. We will employ entity ranking features by assum-
ing that the more relevant entities a prediction contains, the
more relevant it is. The entity-based features will be ex-
tracted and computed relative to the parent document of a
prediction (dp) or on the prediction itself (p).

Features extracted from documents are title, titleSim, sen-
Pos, senLen, cntSenSubj, cntEvent, cntFuture, cntEventSubj,
cntFutureSubj, timeDistEvent, timeDistFuture and tagSim.
Features extracted from predictions are isSubj and timeDist.
The value of all features is normalized to range from 0 to
1, unless otherwise stated. First, the feature title indicates
whether an entity e is in the title of dp.

title(e, dp) = isInTitle(e, dp) (3)

A value is 1 if e appears in the title of dp, or 0 if otherwise.
titleSim is a string similarity between e and the title.

titleSim(e, dp) =
|e ∩ title(dp)|

|e ∪ title(dp)|
(4)

senPos gives the position of the 1st sentence where e occurs
in dp.

senPos(e, dp) =
len(dp) − pos(firstSen(e))

len(dp)
(5)

where len(dp) gives the length of dp in words. pos(sy) is the
position of a sentence sy in dp. senLen gives the length of
the first sentence of d that contains e.

senLen(e, dp) =
len(firstSen(e))

maxsy∈dp len(sy)
(6)

cntSenSubj is the number of sentences where e is a subject.
We run a dependency parser over the sentences in order to
determine whether an entity is a subject of not.

cntSenSubj(e, dp) =
1

|Se|

X

sy∈Se

isSubj(e, sy) (7)

where Se is a set of all sentences of e in dp. isSubj(e, sy) is
1 if e is a subject of sy. cntEvent is the number of event
sentences (or sentences annotated with dates) of e.

cntEvent(e, dp) =
1

|Ep
d
|

X

sz∈Ep
d

X

sy∈Se

isEqual(sz , sy) (8)

where Ep

d is a set of all event sentences in dp. isEqual(sz, sy)
returns 1 if sz equals to sy. cntFuture is the number of
sentences with a mention of a future date. cntEventSubj is
the number of event sentences that e is a subject.

cntEventSubj(e, dp) =
1

|Ep
d
|

X

sz∈Ep
d

isSubj(e, sz) (9)

Similarly, cntFutureSubj is the number of future sentences
that e is a subject. timeDistEvent is a measure of the dis-
tance between e and all dates in dp.

timeDistEvent(e, dp) =
1

|Ee|

X

sz∈Ee

avg(normist(e, sz)) (10)

where normDist(e, sz) = 1
|Tsz |

P

tk∈Tsz

maxDist(sz)−dist(e,tk)
maxDist(sz)

.

dist(wi, wj) = |pos(wi)−pos(wi)|−1. Ee is a set of all event
sentences of e, and Tsz is a set of all temporal expressions
in sz. dist(wi, wj) is a distance in words between terms wi

and wj . maxDist(sz) is a maximum distance between terms
in sz. timeDistFuture(e, dp) is a distance of e and all future
dates in dp computed similarly to timeDistEvent. tagSim is
a string similarity between e and an entity tagged in dp.

tagSim(e, dp) = max
en∈Np

d

|e ∩ en|

|e ∪ en|
(11)

where N p

d is a set of all entities tagged in dp. tagSim is only
applicable for a collection provided with manually assigned
tags (e.g., the New York Times Annotated Corpus).

isSubj (e, p) is 1 if e is a subject with respect to a prediction
p, and timeDist(e, p) is a distance of e and all future dates
in p computed similarly to timeDistEvent. All features in
this class are parameter-free.
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3.3 Topic Similarity
This class of features is aimed to compare the similarity

between q and p on a higher level by representing them using
topics. Examples of topics are “health care reform”, “finan-
cial crisis”, and “global warming”. Several works [7, 32] have
proposed to model a document with a low dimensionality, or
to use topics rather than terms. We will use latent Dirichlet
allocation (LDA) [7] to model a set of topics. LDA is based
on a generative probabilistic model that models documents
as mixtures over an underlying set of topic distributions.
In general, topic modeling consists of two main steps. The
first step is to learn topic models from training data. LDA
requires the parameter Nz or the number of topics to be
specified. After a model is trained, the next step is to in-
fer topics from the learned topic model outputting a topic
distribution for the prediction.

Wei and Croft [32] incorporated topic modeling for ad-hoc
retrieval, and showed that linearly combining LDA with the
query likelihood model outperformed non-topic models like
the unigram model. We incorporate LDA into the retrieval
process differently from Wei and Croft in two ways. First,
instead of combining LDA scores with the original retrieval
score, we represent q and p as vectors of topic distributions
and compute the topic-based similarity using a cosine sim-
ilarity between two vectors. Second, we explicitly take the
time dimension into modeling topics because topics distribu-
tions can evolve over time. Intuitively, topics keep changing
over time according to different trends.

We apply topic modeling to future retrieval in three main
steps: 1) learning a topic model, 2) inferring topic models,
and 3) measuring topic similarity.

Learning a topic model. We take into account the time
dimension for learning topic models. As shown in Figure 2,
we create training data by partitioning the document collec-
tion DN into sub-collections (or document snapshots) with
respect to time. In other words, we group documents by year
of publication, and randomly select documents as training
data, called a training data snapshot Dtrain,tk

at time tk.
Note that, we can also use more sophisticated approaches
for modeling topics over time as presented in [31]. However,
we will leave this study for future work.

Topic model inference. Using learned models from the
previous step, we determine the topics for q and p from their
contents. This process is called topic inference, which rep-
resents a query and a prediction by a distribution of topics
(probabilities). For example, given a topic model φ, a pre-
diction p can be represented as pφ = p(z1), . . . , p(zn), where
p(z) gives a probability of a topic z obtained from φ. Because
our topic models are learned from different time periods, a
question is which model snapshot we use for inference. Note
that, q and p must be inferred from the same model snap-
shot in order to be comparable. We select a topic model for
inferring in two ways. First, we select a topic model from
a time snapshot time(dq) which corresponds to the publica-
tion date of the news article parent of q. Second, a topic
model is selected from a time snapshot t which corresponds
to the publication date of the news article making predic-
tion p, or the time(dp). Moreover, a prediction p will be
inferred in three different ways depending on the contents
used: 1) only text ptxt, 2) both text ptxt and context pctx,
and 3) the parent document dp. For a query q, the contents
of its parent document dq will be used for inference.

In addition to using all Nz topics for inference, we will

also select only top-k topics ranked by the importance. The
idea is that measuring the topic similarity using too many
topics may not be as accurate as using only the most impor-
tant topics. We use coverage and variation proposed in [29]
for ranking topics. A topic coverage µ(z) assumes that top-
ics that cover a significant portion of the corpus content are
more important than those covering little content, while a
topic variation σ(z) considers topics that appear in all the
documents to be too generic to be interesting, although they
have significant content coverage. µ(z) and σ(z) are com-
puted using a mean and a standard deviation over topic
distributions, and the final score for ranking topic is a mul-
tiply of µ(z) and σ(z). The calculation µ(z) and σ(z) for a
topic z at time tk is given as:

µ(z) =
1

PND
i=1 len(di)

ND
X

i=1

len(di) · pi(z) (12)

σ(z) =

v

u

u

t

1
PND

i=1 len(di)

ND
X

i=1

len(di) · (pi(z) − µ(z))2 (13)

where ND is the number of documents in a training set at
time tk, or |Dtrain,tk

|. pi(z) gives a probability of a topic z

in a document di and len(di) is the document length of di.
A final score for ranking a topic z can be computed as:

rank(z) = µ(z)λ1 · σ(z)λ2 (14)

where the parameters λ1 and λ2 indicate the importance
of µ(z) and σ(z). If λ1 = 1 and λ2 = 0, the ranking is
determined purely by topic coverage. On the contrary, if
λ1 = 0 and λ2 = 1, the ranking emphasizes topic variance.

Measuring topic similarity. Given a topic model φ,
the topic similarity can be calculated using a cosine simi-
larity between a topic distribution of query qφ and a topic
distribution of prediction pφ as follows.

topicSim(q, p) =
qφ · pφ

||qφ|| · ||pφ||

=

P

z∈Z qφz
· pφz

q

P

z∈Z q2
φz

·
q

P

z∈Z p2
φz

(15)

We denote a topical feature using LDAi,j,k, where i is
one of the two different methods for selecting model snap-
shot: i = 1 for selecting a topic model from a time snap-
shot time(dq), and i = 2 for selecting from a time snapshot
time(dp); j is one of the three different ways of using the
contents for inference: ptxt, pctx, or dp. Finally, k refers
to whether we use all of only top-k of topics for inference.
Thus, this results in 12 (=3*2*2) LDA-based features in to-
tal.

3.4 Temporal Similarity
As mentioned earlier, we explicitly exploit temporal ex-

pressions in ranking. To measure the temporal similarity
between a query and a prediction, we employ two features
proposed in previous work: TSU [16] and FS [15].

We will represent our model of time using a time interval
[b, e] having a begin point b and the end point e. The actual
value of any time point, e.g., b or e in [b, e], is an integer or
the number of time units (e.g., milliseconds or days) passed
(or to pass) a reference point of time (e.g., the UNIX epoch).
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Figure 2: LDA topic snapshots based on time.

The first feature TSU is defined as the probability of gen-
erating the time of query qtime from the document creation
date time(d). TSU can be computed as follows.

TSU = DecayRate
λ·

|qtime−time(d)|
µ (16)

where DecayRate and λ are constants, 0 < DecayRate < 1
and λ > 0. µ is a unit of time distance. Intuitively, the prob-
ability obtained from this function decreases proportional to
the distance between qtime and time(d), that is, a document
with its creation date closer to qtime will receive a higher
probability than a document with its creation date farther
from qtime.

We apply TSU for measuring the temporal similarity be-
tween q and p based on two assumptions. First, we assume
that p is more likely to be relevant if its parent time time(dp)
is closer to the time of query article time(dq). Our first tem-
poral feature, denoted TSU1, will be calculated similarly to
Equation 16 resulting the following function.

TSU1(q, p) = DecayRate
λ·

|time(dq)−time(dp)|
µ (17)

The second assumption, denoted TSU2, is that a predic-
tion is more likely to be relevant if its future dates pfuture

are closer to the publication date of query article time(dq).
If there are more than one future dates associated to p, a
final score will be averaged over scores of all future dates
pfuture. The temporal distance of TSU2 of q and p is defined
as follows.

TSU2(q, p) =
1

Nf

X

tf∈pfuture

DecayRate
λ·

|time(dq)−tf |

µ (18)

where tf is a future date in pfuture and Nf is the number of
all future dates.

In addition to TSU1 and TSU2, we can measure the tem-
poral similarity between q and p using a fuzzy membership
function, which is originally proposed by Kalczynski and
Chou [15].

We adapt the original fuzzy set function in [15] by using its
parent time time(dp) and the time of query article time(dq).
We denote this feature as FS1, and it can be computed as
follows.

FS1(q, p) =

8

>

<

>

:

0 if time(dp) < α1 ∨ time(dp) > time(dq),

f1(time(dp)) if time(dp) ≥ α1 ∧ time(dp) < time(dq),

1 if time(dp) = time(dq).

(19)

where f1(time(dp)) is equal to
“

time(dp)−α1
time(dq)−α1

”n

if time(dp) 6=

time(dq), or 1 if time(dp) = time(dq).
We define the second temporal feature based on a fuzzy set

by using the prediction’s future dates pfuture and the publica-
tion date of query article time(dq). Similarly, if a prediction
p has more than one future date, a final score will be av-
eraged over scores of all dates pfuture. The second temporal
feature FS2 is defined as follows.

FS2(q, p) =
1

Nf

X

tf∈pfuture

8

>

<

>

:

0 if tf < time(dq) ∨ tf > α2,

1 if tf = time(dq),

f2(tf ) if tf > time(dq) ∧ tf ≤ α2.

(20)

Nf is the number of all future dates in pfuture, and tf is a fu-

ture date, i.e., tf ∈ pfuture. f2(tf ) is equal to
“

α2−tf

α2−time(dq)

”m

if tf 6= time(dq), or 1 if tf = time(dq). n and m are con-
stants. α1 and α2 are the minimum and maximum time of
reference with respect to qtime. α1 is calculated by subtract-
ing the time offset smin from from qtime , and α2 is calculated
by adding the offset smax to qtime.

4. RANKING MODEL
Given a query q, we will rank a prediction p using a

ranking model obtained by training over a set of labeled
query/prediction pairs using a learning algorithm. An un-
seen query/prediction pair (q, p) will be ranked according to
a weighted sum of feature scores:

score(q, p) =

N
X

i=1

wi × xi (21)

where xi are the different features extracted from p and q,
N is the number of features, and wi are the weighting co-
efficients. The goal of the algorithm is to learn the weights
wi using a training set of queries and predictions, in order
to minimize a given loss function. Learning to rank algo-
rithms can be categorized into three approaches: pointwise,
pairwise, and listwise approaches [20]. The pointwise ap-
proach assumes that retrieved documents are independent,
so it predicts a relevance judgment for each document and
ignores the positions of documents in a ranked list. The
pairwise approach considers a pair of documents, and rele-
vance prediction is given as the relative order between them
(i.e., pairwise preference). The listwise approach considers a
whole set of retrieved documents, and predicts the relevance
degrees among documents. For a more detailed description
of each approach, please refer to [20].

We employ the listwise learning algorithm SVMMAP [34].
The algorithm trains a classifier using support vector ma-
chines (SVM), and it determines the order of retrieved doc-
uments in order to directly optimize Mean Average Preci-
sion (MAP). In addition, we also experimented with other
learned ranking algorithms: RankSVM [14], SGD-SVM [36],
PegasosSVM [28], and PA-Perceptron [9]. However, these
algorithms do not perform as well as SVMMAP in our exper-
iments. Thus, we will only discuss the results obtained from
SVMMAP in the next section.
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Table 2: Examples of future-related topics.
Politics Environment Space
president election global warming Mars
Iraq war energy efficiency Moon

Science Physics Health
earthquake particle Physics bird flue
tsunami Big Bang influenza

Business Sport Technology
subprime Olympics Internet
financial crisis World cup search engine

5. EXPERIMENTS
In this section, we evaluate the retrieval effectiveness of

our proposed ranking model using three different query for-
mats. We will first describe the experimental settings fol-
lowed by an explanation of the results and a detailed discus-
sion.

5.1 Experimental Settings
Temporal document collection. We used the New

York Times Annotated Corpus for our document collection,
which contains 1.8 million documents covering the period
from January 1987 to June 2007. In order to extract pre-
dictions and features, a series of language processing tools,
including OpenNLP (for tokenization, sentence splitting and
part-of-speech tagging, and shallow parsing), the SuperSense
tagger (for named entity recognition) and TARSQI Toolkit
(for extracting temporal expressions from documents). Given
the importance of time to our system, we note that the tem-
poral expression extraction of TARSQI has a reported per-
formance of 0.81 F1 on the Time Expression Recognition
and Normalization task4.

We employed the Apache Lucene search engine for both
indexing and retrieving predictions. The statistics of ex-
tracted data are as follows. There are 44,335,519 sentences
and 548,491 are predictions. There are 939,455 future dates,
and an average future date per prediction is 1.7 and the
standard deviation is 0.92. Among 1.8 million documents,
more than 25% of all documents contain at least one predic-
tion (i.e., a reference to the future). In order to determine
this percentage over a broader range of news sources, we
performed the same analysis on 2.5 million documents from
over 100 news sources from Yahoo! News for the one year
period from July 2009 to July 2010 and found over 32% of
the documents contained at least one prediction.

Future-related queries. There is no gold standard avail-
able to evaluate the task of ranking related news prediction.
We manually selected 42 query news articles from the New
York Times that cover the future-related topics shown in
Table 2. The actual queries (QE , QT and QC) used for re-
trieving predictions are extracted from these news articles.

Relevance assessments. Human assessors were asked
to evaluate query/prediction pairs (e.g., relevant or non-
relevant) using 5 levels of relevance: 4 for excellent (very
relevant prediction), 3 for good (relevant prediction), 2 for
fair (related prediction), 1 for bad (non-relevant prediction),
and 0 for non prediction (incorrect tagged date). The last
option was presented because there are predictions incor-
rectly annotated with time (this is an error produced by

4
http://timex2.mitre.org/tern.html

the annotation tools). More precisely, an assessor was asked
to give a relevance score Grade(q, p, t) where (q, p, t) is a
triple of a query q, a prediction p, and a future date t in
p. Consider the following prediction about the topic “global
warming” and the publication date of the news article is
2007/02/21:

Formal ratification of the pact – which commits
the union to reduce emissions of“greenhouse gases”
by 8 percent of 1990 levels during the five-year pe-
riod from 2008 through 2012 – now goes to the
European Council of heads of state and govern-
ment, which could act as early as this month at
the union summit in Barcelona.

The prediction contains two future dates (as highlighted
in bold). Hence, an assessor has to give judges to two triples
corresponding to q, p and both future dates. A triple (q, p, t)
is considered relevant if Grade(q, p, t) ≥ 3, and it is con-
sidered non-relevant if 1 ≤ Grade(q, p, t) ≤ 2. Relevance
level 0 is not included in the evaluation5. These judgments
are normalized by a query/prediction pair (q, p) since we are
interested in presenting a prediction for all future dates, re-
gardless of their number. That is, a query/prediction pair
(q, p) is relevant if and only if there is at least one rele-
vant triple (q, p, t), and a prediction is non-relevant if all
triples are non-relevant. Our assumption is that predictions
extracted from more recent documents are more relevant.

In total, assessors judged 52 queries and for each one of
them we retrieved up to 100 sentences that contained predic-
tions. On average 94 sentences with future mentions were
retrieved, with an average of 1.2 future dates per predic-
tion. Finally, assessors evaluated 4,888 query/prediction
pairs (approximately 6,032 of triples)6.

Our machine learning ranking models operate in a su-
pervised manner, and as such, they need training data for
learning. We created training data using cross validation
by randomly partitioned query articles into NF folds. We
used NF − 1 query/prediction from other folds for training
a ranking mode and the remaining fold for testing. We re-
moved queries with zero relevant results, and we obtained
NF = 3, 4, 5 for QE , QC , QT respectively.

Parameter setting. We set the boost factors on an in-
dependent experiment as boost(text) = 5.0,
boost(context) = 1.0, and boost(title) = 2.0. We use the
recommended values for the constants b = 0.75 for all fields,
and k1 = 1.2 [26]. For LDA-based features, we trained a
yearly model snapshot by selecting 4% of all documents in
each year. For each document, we filtered out terms occur-
ring in less than 15 documents and the 100 most common
terms. We learn a topic model for each document snapshot
by employing Stanford Topic Modeling Toolbox7, and the
number of topics for training LDA Nz is fixed to 500 and the
number of topics for inference k is 200. A learning algorithm
we use is the collapsed variational Bayes approximation to
the LDA objective (CVB0LDA) [2]. All other parameters
are default values of the topic modeling. Using CVB0LDA

5
We are interested in assessing the performance of the ranking al-

gorithm and not the annotation tools. However, we note the overall

system will be impacted by the annotation errors.
6
The evaluation collection we have created is available for

download at http://www.idi.ntnu.no/~nattiya/data/sigir2011/

futurepredictions.zip.
7
http://nlp.stanford.edu/software/tmt/tmt-0.3/
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Figure 3: P@10 and MAP performance of QE (left)
when varying top-m entities, and QC (right) when
varying top-n terms.

required high CPU and memory, but needed fewer iterations
and had faster convergence rates than a collapsed Gibbs
sampler [12], which requires less memory during training.

For both TSU1 and TSU2, DecayRate = 0.5, λ = 0.5 and
µ = 2y are used where y the number of years. For both FS1

and FS2, n = 2, m = 2, smin = 4y and smax = 2y are used.
So, α1 = time(dq) − 4y and α2 = time(dq) + 2y.

Methods for comparison. We experiment with the
three different ways of constructing the query QE , QT , and
QC . The baseline for retrieval is Lucene’s default ranking
function and our queries incorporate two time constraints as
explained in Section 2.4. We re-rank the baseline results us-
ing SVMMAP yielding Re-QE , Re-QT and Re-QC . For the
application of ranking related news predictions, we prefer
top-precision retrieval performance metrics over recall-based
metrics: a user will be typically interested in a few top pre-
dictions even though there are many predictions retrieved.
Consequently, we envision a user interface that contains lit-
tle space for displaying related predictions. Thus, we will
measure the retrieval effectiveness by the precision at 1, 3
and 10 (P@1, P@3, and P@10 respectively), Mean Recipro-
cal Rank (MRR), and Mean Average Precision (MAP). We
report the average performance over NF folds to measure
the overall performance, for each query type.

5.2 Experimental Results
The three types of queries (QE ,QT , and QC) are com-

posed of either top-m entities or top-n terms, or both. We
first establish which are good m and n values for each one
of the types. Instead of varying m and n in re-ranking, we
select the m and n that give a reasonable improvement in
a hold-out set (where we randomly divided queries into two
folds). Therefore, we will use only one fixed version of m

and n for the rest of our experiments. We select the values
of m and n by performing a preliminary analysis as follows.
First, by looking at P@10 and MAP, we select the value of m

that yields the best performance using only QE to retrieve
predictions for each varying m. As shown in Figure 3 (left),
9 ≤ m ≤ 12 give almost no difference in terms of P@10.
In spite of that, we choose the number of entities m = 11
because it is slightly better than the other values. Next, we
find the optimal value of n by observing the performance
of QC when m is fixed to 11 and the value of n is varied.
As depicted in Figure 3(right), there is very slight difference
in P@10 for 9 ≤ n ≤ 11; We choose the number of terms
n = 10 because it obtains the best in MAP among them.

The retrieval effectiveness of simple methods and their
corresponding re-ranking methods are displayed in Table 3.
These results are averaged over queries retrieving at least

Table 3: The effectiveness of each method when us-
ing all queries; †,∓ indicates statistical improvement
over the corresponding simple methods using t-test
with significant at p < 0.1,p < 0.05 respectively.

Method P@1 P@3 P@10 MRR MAP

QE 0.300 0.333 0.290 0.473 0.219
QT 0.643 0.579 0.455 0.760 0.385
QC 0.500 0.561 0.427 0.656 0.231

Re-QE 0.500 0.499 0.360 0.629 0.266
Re-QT 0.738† 0.619 0.462 0.831† 0.387
Re-QC 0.773∓ 0.682∓ 0.455 0.841∓ 0.271

one relevant prediction. In general, QT gains the highest
effectiveness in all measurements followed by QC and QE

and the feature-based re-ranking approach improves the ef-
fectiveness for all query types. In addition, Re-QC has the
highest effectiveness over other re-ranking methods for P@1
and P@3, while Re-QT gains the highest effectiveness for
the rest of all metrics.

QE and QC pose a problem in not retrieving any relevant
result of our judged pool among the first 100 for a large
number of queries, which makes it impossible for the ma-
chine learning model to improve the ranking. However, we
still want to compare the performance between the different
variations of the query (QE , QC , QT ). Therefore, we use a
subset of queries that contained at least one relevant result
among all the different methods. The results are shown in
Table 4 where we compare all other methods against QE

because we have observed that QE performs worst among
them. As seen from the results of each re-ranking method,
our proposed features improve the effectiveness for all cor-
responding simple methods. In particular, the re-ranking
method Re-QC outperforms the simple method QE signif-
icantly. However, Re-QE did not provide a significant im-
provement over QE . The results show that, for the same set
of queries, using entities alone are limited while terms alone
are able to retrieve most of relevant predictions.

Interestingly, when looking at the same sub-set of queries
with relevant predictions, the re-ranking approach Re-QC

outperforms every other method, even if the plain retrieval
QT is superior to QC . This is an indicator that entity-based
features are able to produce higher quality results but only
for a certain type of topics. We performed an error analysis
to determine why QE is unable to retrieve relevant predic-
tions. In general, QE fails for a topic that cannot be rep-
resented using only people, locations, or organizations. For
example, for the topic about “the Europeans agreement of
gas emissions”, the top-5 QE is
〈European Union,Brussels,Finland,Germany,Hungary〉 and
the top-5 QT is 〈european, emission, target, climate, brussels〉.
In this case, QE is unable to represent the key terms “emis-
sion” and “climate”, and thus fails to retrieve many relevant
predictions that match those terms.

Similarly, for the query topic about “Clinton health care
reform”, QE is represented using the named entity Clinton
(the terms “health care” and “reform” are not annotated as
entities). When matching, all predictions containing the en-
tity Clinton are matched which will return many documents
that are not related to “health care” and “reform”.
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Table 4: The effectiveness of each method when us-
ing a subset of queries; †,∓,⋆ indicates statistical im-
provement over the method QE using t-test with sig-
nificant at p < 0.1, p < 0.05, p < 0.01 respectively.

Method P@1 P@3 P@10 MRR MAP

QE 0.300 0.333 0.290 0.473 0.219
QT 0.500 0.533 0.430 0.638 0.219
QC 0.600† 0.533† 0.360 0.727† 0.163

Re-QE 0.500 0.499 0.360 0.629 0.266
Re-QT 0.700 0.600 0.410 0.762 0.236
Re-QC 1.000∓ 0.714∓ 0.443 1.000 0.303⋆

Table 5: Top-5 features with highest weights and
lowest weights for each query type.

QE QT QC

Feature Wi Feature Wi Feature Wi

tagSim 1.00 bm25f 1.00 LDA1,parent,k 1.00

FS1 0.97 retScore 0.60 retScore 0.99
TSU2 0.88 LDA1,parent,k 0.55 LDA1,parent,all 0.96

LDA1,txt,k 0.87 LDA2,parent,k 0.51 bm25f 0.93

LDA1,txt,all 0.82 LDA1,parent,all 0.49 isSubj 0.87

cntSenSubj 0.01 timeDistEvent -0.03 cntEventSen -0.02
cntEventSubj 0.01 timeDistFuture -0.11 querySim -0.05
isInTitle 0.00 cntEventSen -0.12 cntFutureSen -0.10
cntEventSen 0.00 cntFutureSen -0.12 timeDistFuture -0.14
querySim -0.01 senLen -0.16 senLen -0.18

5.3 Feature Analysis
We analyzed feature weights obtained from the learning

algorithm SVMMAP in order to understand better what is
the importance of the different features,. Note that, in or-
der to compare the weights among different queries, we per-
formed normalization by diving with the maximum value of
all weights for each query. Column wi in Table 5 displays
the top-5 features with highest and lowest weights for each
query type.

At least two topic-based features of all query types are in
the top-5 features with highest weight, and therefore topic-
based features play an important role in the re-ranking model.
Although retScore and bm25f measure the similarity on a
term level, they help to re-rank predictions when incorpo-
rated into the machine learning model. as seen in the top-
5 features for QT and QC . The feature that received the
highest importance value for the QE type is tagSim, which
measures the similarity between entities in a prediction and
manually tagged entities. This indicates that tagged entities
in a query document can precisely represent user informa-
tion needs. The temporal features FS1 and FS1 also play
an important role for QE .

Features in top-5 features with lowest weights are those
from the entity-based class. Recall that these features are
extracted in order to measure the importance of entities an-
notated in a prediction with respect to their respective par-
ent documents. However, the results show that these fea-
tures are not good enough for discriminating between rele-
vant and non-relevant predictions.

6. RELATEDWORK
Our related work includes sentence retrieval, entity rank-

ing, temporal ranking, and domain-specific predictions.
Sentence retrieval is the task of retrieving a relevant sen-

tence related to a query. Different application areas of sen-

tence retrieval are mentioned in the book of Murdock [24]
and references therein, including, for example, question an-
swering [30], text summarization, and novelty detection. Sur-
deanu et al. [30] applied supervised learning to rank a set of
short answers (sentences) matched a given question (query)
by using different classes features. Li and Croft [19] pro-
posed to detect novelty topics by analyzing sentence-level
information (sentence lengths, named entities, and opinion
patterns). Generally, because sentences are much smaller
than documents and thus have limited content compared to
documents, the effectiveness of the retrieval of sentences is
significantly worse. To address this problem, Blanco and
Zaragoza [6] proposed to use the context of sentences in or-
der to improve the effectiveness of sentence retrieval.

There have been a number shared tasks with the goal of
furthering research in the area of entity ranking. For in-
stance, the TREC 2008 Enterprise track was created with
the objective to find experts (or people) related to a given
topic of interest. The INEX Entity Ranking track [10] was
launched with the task of finding a list of relevant entities
(represented by Wikipedia articles) for a given topic. Re-
cently, the TREC 2009 Entity track was introduced, and
the task is to find related entities (represented by home-
pages) given a topic (called a source entity). The difference
between the TREC 2009 Entity and the previous tracks is
that it allows a relation and a target entity type to be ex-
plicitly specified. There are various approaches to ranking
entities by using language models [4], voting models [21],
and entity-based graph models [35].

Many ranking models exploiting temporal information have
been proposed, including [5, 11, 18, 23]. Li and Croft [18]
experimented with time-based language models by assigning
a document prior using an exponential decay function of its
creation date, such that the more recent documents obtain
the higher probabilities of relevance. Diaz and Jones [11]
build a temporal profile of a query from the distribution of
document publication dates. They use time dependent fea-
tures derived from these profiles that improve the ranking
of temporal queries.

Berberich et al. [5] integrated temporal expressions into
query-likelihood language modeling, which considers uncer-
tainty inherent to temporal expressions in a query and in
documents, i.e., two temporal expressions can refer to the
same time interval even when they are not exactly equal.
Metzler et al. [23] mined query logs to identify implicit tem-
poral information needs and presented a time-dependent
ranking model for certain types of queries.

There is much research in domain-specific predictions such
as stock market predictions [27, 33] and recommender sys-
tems [17, 25]. The first aims at predicting stock price move-
ments by analyzing financial news, while the latter applies
collaborative filtering algorithms for recommending books,
videos, movie, etc. based on users’ interests.

The future retrieval problem was first presented by Baeza-
Yates [3]. He proposed to extract temporal expressions from
news, index news articles together with temporal expres-
sions, and retrieve future information (composed of text and
future dates) by using a probabilistic model. A document
score is given as a multiplication of a keyword similarity and
a time confidence, i.e., a probability that the document’s
events will actually happen. The limitation of this original
work is that it is evaluated using a small data set and only
a year granularity is used.
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The more recent work on the future-related information
retrieval is presented by Jatowt et al. [13]. In contrast to our
work, they do not focus on relevance and ranking future-
related information retrieval. They presented an analyti-
cal tool for extracting, summarizing and aggregating future-
related events from news archives, but did not perform an
extensive evaluation, only calculating averaged precision on
a small set of generated results.

7. CONCLUSIONS AND FUTUREWORK
In this paper, we demonstrated that future related infor-

mation is abundant in news stories and defined the task of
ranking related future predictions. The main goal of this task
is to improve user access to this information by selecting the
predictions from a news archive that are most relevant to a
given news article. We created an evaluation dataset with
over 6000 relevance judgments and addressed this task using
a learning to rank methodology incorporating four classes
of features including term similarity, entity-based similarity,
topic similarity, and temporal similarity that outperforms a
strong baseline system. Finally, we performed an in-depth
analysis of feature importance. Possible future work includes
time-dependent query classification using query logs, com-
bining multiple sources (Wikipedia, blogs, home pages, and
tweets) of future-related information, sentimental analysis
for future-related information and evaluating the effective-
ness of the predictions in a real-world news application.
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