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ABSTRACT
We examine the feasibility of private set intersection (PSI) over
massive datasets. PSI, which allows two parties to find the in-
tersection of their sets without revealing them to each other, has
numerous applications including to privacy-preserving data min-
ing, location-based services and genomic computations. Unfortu-
nately, the most efficient constructions only scale to sets containing
a few thousand elements—even in the semi-honest model and over
a LAN.

In this work, we design PSI protocols in the server-aided set-
ting, where the parties have access to a single untrusted server that
makes its computational resources available as a service. We show
that by exploiting the server-aided model and by carefully optimiz-
ing and parallelizing our implementations, PSI is feasible for bil-
lion-element sets even while communicating over the Internet. As
far as we know, ours is the first attempt to scale PSI to billion-
element sets which represents an increase of five orders of magni-
tude over previous work.

Our protocols are secure in several adversarial models including
against a semi-honest, covert and malicious server; and address a
range of security and privacy concerns including fairness and the
leakage of the intersection size. Our protocols also yield efficient
server-aided private equality-testing (PET) with stronger security
guarantees than prior work.

1 Introduction
In the problem of private set intersection (PSI), two parties want to
learn the intersection of their sets without revealing to each other
any information about their sets beyond the intersection. PSI is
a fundamental problem in security and privacy that comes up in
many different contexts. Consider, for example, the case of two or
more institutions that wish to obtain a list of common customers
for data-mining purposes; or a government agency that wants to
learn whether anyone on its no-fly list is on a flight’s passenger
list. PSI has found applications in a wide range of settings such as
genomic computation [4], location-based services [55], and collab-
orative botnet detection [54].

SECURE MULTI-PARTY COMPUTATION. PSI is a special case of
the more general problem of secure multi-party computation (MPC).
In this problem, each party holds its own private input and the goal
is to collectively compute a joint function of the participants’ in-
puts without leaking additional information and while guaranteeing
correctness of the output. The design and implementation of prac-
tical MPC protocol has been an active area of research over past
decade with numerous efforts to improve and optimize software
implementations and to develop new frameworks such as Fairplay

[53, 6], VIFF [19], Sharemind [7], Tasty [40], HEKM [41], VM-
Crypt [52], and SCAPI [25]. While these general-purpose solutions
can be used to solve the PSI problem, they usually do not provide
efficient solutions. A large body of work, therefore, has focused
on the design and implementation of efficient special-purpose PSI
protocols [30, 38, 10, 17, 22, 39, 43, 42].

LIMITATIONS OF MPC. While progress on efficient PSI (and MPC
in general) has been impressive, existing protocols are still far from
optimal for many real-world scenarios. As the trend towards “Big
Data" continues, Governments and private organizations often man-
age massive databases that store billions of records. Therefore,
for any PSI solution to be of practical interest in such settings, it
needs to efficiently process sets with tens or hundreds of millions of
records. Unfortunately, existing general- and special-purpose PSI
solutions (especially with malicious security) are orders of mag-
nitude less efficient than computing intersections on plaintext sets
and hence do not scale to massive datasets.

Another limitation of standard approaches to PSI is that achiev-
ing fairness is not always possible. Roughly speaking, fairness en-
sures that either all the parties learn the output of the computation
or none will. This is crucial in many real-world applications such as
auctions, electronic voting, or collective financial analysis, where a
dishonest participant should not be able to disrupt the protocol if it
is not satisfied with the outcome of the computation. In 1986, Cleve
showed that complete fairness is impossible in general, unless the
majority of the players are honest [15]. A number of constructions
try to achieve fairness for a specific class of functionalities [36], or
consider limited (partial) notions of fairness instead [56, 31, 35].

SERVER-AIDED MPC. A promising approach to address these lim-
itations is server-aided or cloud-assisted MPC.1 In this variant of
MPC, the standard setting is augmented with a small set of servers
that have no inputs to the computation and that receive no output
but that make their computational resources available to the parties.
In this paradigm, the goal is to tradeoff the parties’ work at the ex-
pense of the servers’. Server-aided MPC with two or more servers
has been considered in the past [20, 21] and even deployed in prac-
tice [8], but since we focus on instantiating the server using a cloud
service we are mostly interested in the single-server scenario.

A variety of single-server-aided protocols have been considered
in the past. This includes general-purpose solutions such as [2],

1An alternative approach considered in the PSI literature is the
use of tamper-proof hardware in the design of private set intersec-
tion [37, 29]. This approach allows for better efficiency and hence
more scalable protocols. Token-based PSI makes different and in-
comparable trust assumptions compared to server-aided MPC, and
does not seem suitable for settings that involve a cloud service.



which combines fully-homomorphic encryption [33] with a proof
system [5]; and the constructions based on Yao’s garbled circuit
technique [61, 62], proposed by Feige, Killian and Naor [28] in
the semi-honest model and recently formalized and extended to
stronger models in [44] and optimized and implemented in [47].
This also includes special-purpose protocols such as server-aided
private equality-testing [55, 32].

NON-COLLUSION. With the exception of [2], which uses heavy
machinery and is only of theoretical interest at this stage, all other
single-sever-aided protocols we know of are secure in a setting
where the server does not collude with the parties. There are many
settings in practice where collusion does not occur, e.g., due to
physical restrictions, legal constraints and/or economic incentives.
In a server-aided setting where the server is a large cloud provider
(e.g., Amazon, Google or Microsoft), it is reasonable—given the
consequences of legal action and bad publicity—to assume that the
server will not collude with the parties.

The work of [44] attempts to formally define non-collusion in
the context of MPC. For the purpose of our work, however, we
use a simplified notion of non-collusion wherein two parties A
and B are considered to not collude if they are not simultaneously
corrupted by the adversary (e.g., either A is malicious or B is,
but not both). This allows us to use the standard ideal/real-world
simulation-based definitions of security for MPC and simply re-
strict the parties that the adversary can corrupt. In particular, we
consider the adversary structures that respect the non-collusion re-
lations described above (which we refer to as admissible subsets).
So, for example, with two parties and a single server that does not
collude with them we need to consider adversary structures that
only contain a single malicious party. On the other hand, in a set-
ting with multiple parties and a single server, either an arbitrary
subset of the parties are corrupted or the server is. This simplified
notion appears to capture the security of all existing server-aided
constructions we are aware of (also see Section 2).

1.1 Our Contributions
Motivated by the problem of PSI for massive datasets, we design
and implement several new PSI protocols in the server-aided set-
ting. We prove our protocols secure in several adversarial mod-
els including against a semi-honest, covert and malicious server;
and address a range of security and privacy concerns including fair-
ness and intersection size-hiding. Our protocols also yield efficient
server-aided private equality-testing (PET) with stronger security
guarantees than prior work.

EFFICIENCY AND COMPARISON. All our protocols require only
a linear number of block-cipher invocations (a pseudorandom per-
mutation) in the set sizes for the parties with inputs; and the exe-
cution of a standard/plaintext set intersection algorithm. This is a
major improvement over all previous general- and special-purpose
PSI constructions.

We then show that by making use of various optimizations, effi-
cient data structures and by carefully parallelizing our implemen-
tations, PSI is feasible for billion-element sets even while commu-
nicating over the Internet. This is five orders of magnitude larger
than what the best standard PSI protocols can feasibly achieve over
a LAN (see the experiments in Sections 5.2 and 5.3).

Our protocols are competitive compared to non-private set inter-
section as well. For example, our semi-honest protocol is only 10%
slower than the non-private variant (note that we use the same op-

timizations in both ours and the non-private protocol). This shows
that achieving privacy can indeed be affordable when using the
right infrastructure and optimizations (see the experiments in Sec-
tion 5.4).

We also show that our constructions can be nicely added on to
existing software for fast set operations. In particular, we show how
to use a NoSQL database implementation, Redis (in use by various
cloud-based services), in a black-box way to implement our server-
aided PSIs (see experiments in Section 5.5.

OPTIMIZATIONS FOR LARGE SETS. In order to make the mem-
ory, bandwidth, and CPU usage of our implementations scalable
to very large (upto billion-elements) sets and for communication
over the internet, we carefully choose every aspect of our imple-
mentation. For example, we use fast and memory-efficient data
structures dense_hash_set and dense_hash_map from the
Sparsehash library [26] to implement our server-side set intersec-
tion protocol. In order to take advantage of the parallelizability of
our protocols, we also use multi-threading both on the client- and
the server-side, simultaneously processing, sending, receiving, and
looking-up elements in multiple threads. The use of parallelization
particularly improves the communication time, which dominates
the total running time of our protocols. Our experiments (see Sec-
tion 5.1) show that we gain up to a factor of 3 improvement in
total running time in this fashion. Other important considerations
include the choice of cryptographic primitives, and the truncation
of ciphertexts before send and receive operations, while avoiding
potential erroneous collisions.

1.2 Related Work
As far as we know, the recent work of Dong, Chen, Camenisch and
Russello [24] is the only other work that proposes a (fair) server-
aided PSI protocol. Their protocol, however, assumes a semi-honest
server and requires public-key operations (i.e., exponentiations) which
prevents their protocol from scaling to the sizes we consider in this
work.

We also note that server-aided PSI protocols can be constructed
from searchable symmetric encryption schemes (SSE) and, in par-
ticular, from index-based SSE schemes [59, 34, 13, 16, 14, 46, 45,
12]. We provide in Appendix A a more detailed comparison be-
tween these notions and only note here that SSE schemes provide a
richer functionality than needed for PSI so the design of non-SSE-
based server-aided PSI protocols is well motivated.

Finally, private equality testing [27, 9, 1, 51] is a well-known
and important functionality that has found numerous applications
in the past, typically as a sub-protocol. Indeed, PET has recently
found application in privacy-preserving proximity testing [55, 32,
58] and, in particular, the work of [55] uses a server-aided PET
(in a model similar to ours) as the main cryptographic component
of their construction. While previous work [55, 32, 58] suggests
several sever-aided PET protocols, all these constructions assume
a semi-honest server. By setting the set size of our intersection
size-hiding protocol to 1 (note that we need to hide the intersection
size to hide the output of PET), we get a an alternative instantiation
of server-aided PET that is secure against a malicious server while
still only using lightweight symmetric-key operations.

2 Security Definition
Our definition of security for private set intersection is in the stan-
dard ideal/real-world paradigm and follows the definitions typically



used for secure MPC [11]. The main difference with standard def-
initions is that, in our setting, we do not allow the adversary to
simultaneously corrupt the server and a (non-server) party. As dis-
cussed above, this captures a (weak) form of non-collusion between
the server and the parties. In the definition that follows, the cor-
rupted parties could be malicious, covert or semi-honest. We also
consider the variants that achieve fairness and those that do/don’t
leak the size of intersection to the server.

REAL-MODEL EXECUTION. The real-model execution of protocol
Π takes place between parties (P1, . . . , Pn), server Pn+1 and an
adversary A that is allowed to corrupt an admissible subset of the
parties. and admissible subset of parties can either be {Pn+1} or
any subset of {P1, · · · , Pn}.

At the beginning of the execution, each party (P1, . . . , Pn) re-
ceives its input set Si ⊆ U , random coins ri, and an auxiliary input
zi while the server Pn+1 receives only a set of random coins rn+1

and an auxiliary input zn+1. The adversaryA receives an admissi-
ble set I ⊂ [n+ 1] that indicates which parties it corrupts.

For all honest parties Pi, let OUTi denote its output and for the
corrupted party Pi, let OUTi denote its view during the execution
of Π. The output of the real-model execution of Π between parties
(P1, . . . , Pn+1) in the presence of an adversary A is defined as:

REAL(k,S, z; r)
def
=
{

OUT1, . . . , OUTn+1

}
,

where S = (S1, . . . ,Sn), z = (z1, . . . , zn+1) and r = (r1, . . . ,
rn+1).

IDEAL-MODEL EXECUTION. The ideal-model execution of proto-
col Π takes place between parties (P1, . . . , Pn), server Pn+1 and a
simulator SIM that is allowed to corrupt at most one party at a time.

As in the real-model execution, the ideal execution begins with
each party (P1, . . . , Pn) receiving its input set Si ∈ U , its coins
ri and an auxiliary input zi, while the server Pn+1 receives only
its coins rn+1 and an auxiliary input zn+1. The simulator receives
an admissible set I ⊂ [n + 1] that indicates which parties it cor-
rupts. Each party (P1, . . . , Pn) sends S′i to the trusted party, where
S′i = Si if Pi is semi-honest and S′i is an arbitrary set if Pi is ma-
licious or covert. If the execution is intersection-size hiding (with
respect to the intersection), the server receives |S′1| through |S′n|
from the trusted party. If the execution is not size-hiding, the server
receives, in addition, |

⋂n
j=1 S

′
j |. The trusted party finally returns

the intersection
⋂n
j=1 S

′
j to each party Pi.

If the execution is not fair, the parties and the server can send
an abort message to the trusted party at any point throughout the
execution and the trusted party will return ⊥ to all parties. If the
execution is fair, they are only allowed to send abort messages be-
fore they receive their outputs.

Security against covert [3] adversaries guarantees that a cheat-
ing adversary that diverts from the specified protocol is caught (de-
terred to cheat) by the honest parties with some probability, which
is called deterrence factor. If the deterrence factor is one, then any
cheating adversary is always detected. In order to handle covert ad-
versaries as opposed to malicious, we need to slightly modify the
above ideal execution. In particular, to achieve a deterrence factor
of 1/t, the trusted party will flip a bias coin that is head with prob-
ability 1/t and is tail otherwise. If the coin turns up head, he will
reveal the honest parties inputs to the adversary and allows him to
decide the honest parties’ outputs. Else, the ideal execution pro-
ceeds as it did above. We refer the reader to [3] for more details.

For all honest parties Pi, let OUTi denote the output returned to
Pi by the trusted party, and for all corrupted parties let OUTi be
some value output by Pi. The output of an ideal-model execution
between parties (P1, . . . , Pn+1) in the presence of a simulator SIM

is defined as

IDEAL(k,S, z; r)
def
=
{

OUT1, . . . , OUTn+1

}
where S = (S1, . . . ,Sn), z = (z1, . . . , zn+1) and r = (r1, . . . ,
rn+1).

We now present our formal definition of security which, intu-
itively, guarantees that executing a protocol Π in the real model is
equivalent to executing Π in an ideal model with a trusted party.

DEFINITION 2.1 (SECURITY). An n-party private set inter-
section protocol Π is secure if for all PPT adversaries A corrupt-
ing an admissible subset of the parties, there exists a PPT simulator
SIM such that for all S ∈ [2U ]n, for all z, and for all i ∈ [n+ 1],{

REAL(k,S, z; r)

}
k∈N

c
≈
{

IDEAL(k,S, z; r)

}
k∈N

where r is chosen uniformly at random.

3 Our Protocols
In this Section, we describe our protocols for server-aided PSI. Our
first protocol is a multi-party protocol that is only secure in the
presence of a semi-honest server (but any collusion of malicious
parties). Our second protocol is a two-party protocol and is secure
against a covert or a malicious server depending on the parameters
used, and also secure when one of the parties is malicious. Our
third protocol shows how one can augment the two-party protocol
to achieve fairness while our fourth protocol, shows how to hide the
size of the intersection2 from the server as well. Our intersection-
size hiding protocol also yields the first server-aided PET with se-
curity against a malicious server.

In all our protocols, k denotes the computational security param-
eter (i.e., the key length for the pseudorandom permutation (PRP))
while s denotes a statistical security parameter. For λ ≥ 1, we
define the set Sλ as

Sλ =
{
x‖1, . . . , x‖λ : x ∈ S

}
and (Sλ)−λ = S. If F : U → V is a function, the S-evaluation
of F is the set F (S) =

{
F (s) : s ∈ S

}
. We also denote by F−1

the inverse of F where F−1(F (S)) = S. If π : [|S|] → [|S|] is a
permutation, then the set π(S) is the set that results from permuting
the elements of S according to π (assuming a natural ordering of
the elements). In other words:

π(S) =
{
xπ(i) : xi ∈ S}.

We denote the union and set difference of two sets S1 and S2 as
S1 + S2 and S1 − S2, respectively.

3.1 Server-aided PSI with Semi-honest Server
We first describe our server-aided protocol for a semi-honest server
or any collusion of malicious parties. The protocol is described in
Fig. 1 and works as follows. Let Si be the set of party Pi. The
2We note that, this is different from what is know in the literature
as size-hiding PSI where the goal is the hide the size of input sets.
Here, we only intend to hide the size of the intersection from the
server who does not have any inputs or outputs.



parties start by jointly generating a secret k-bit key K for a pseu-
dorandom permutation (PRP) F . Each party randomly permutes
the set FK(Si) which consists of labels computed by evaluating
the PRP over the elements of his appropriate set, and sends the
permuted set to the server. The server then simply computes and
returns the intersection of the labels FK(S1) through FK(Sn).

Intuitively, the security of the protocol follows from the fact
that the parties never receive any messages from each other, and
their only possible malicious behavior is to change their own PRP
labels which simply translates to changing their input set. The
semi-hoenest server only receives labels which due to the pseudo-
randomness of the PRP reveal no information about the set ele-
ments. We formalize this intuition in the Theorem 3.1 whose proof
can be found in Appendix B.

Setup and inputs: Let F : {0, 1}k × U → {0, 1}≥k be
a PRP. Each party Pi has a set Si ⊆ U as input while the
server has no input:

1. P1 samples a random k-bit key K and sends it to Pi
for i ∈ [2, n];

2. each party Pi for i ∈ [n] sends Ti = πi(FK(Si)) to
the server, where πi is a random permutation;

3. the server computes I =
⋂n
i=1 Ti and returns it to all

the parties;

4. each party Pi outputs F−1
K (I).

Figure 1: A PSI protocol with a semi-honest server

THEOREM 3.1. The protocol described in Fig. 1 is secure in
the presence (1) a semi-honest server and honest parties or (2) a
honest server and any collusion of malicious parties.

EFFICIENCY. EachPi invokes the PRP, |Si| times, while the server
only performs a “plaintext" set intersection and no cryptographic
operations. Once can use any of the existing algorithms for set
intersection. We use the folklore hash table insertion/lookup which
runs in nearly linear time in parties sets.

Also note that the protocol can be executed asynchronously where
each party connects at a different time to submit his message to the
sever and later to obtain the output.

3.2 Server-aided PSI with Malicious Security
The previous protocol is only secure against a semi-honest server
because the server can return an arbitrary result as the intersection
without the parties being able to detect this. To overcome this we
proceed as follows: we require each party Pi to augment its set Si
with λ copies of each element. In other words, they create a new
set Sλi that consists of elements

{
x‖1, . . . , x‖λ

}
for all x ∈ Si.

The parties then generate a random k-bit key for a PRP F using
a coin tossing protocol and evaluate the PRP on their augmented
sets. This results in sets of labels FK(Sλi ). Finally, they permute
labels with a random permutation πi to obtain Ti = πi

(
FK(Sλ)

)
which they send to the server. The server computes the intersection
I of T1 = π1(FK(Sλ1 )) and T2 = π2(FK(Sλ2 )) and returns the
result to the parties. Each party then checks that F−1

K (I) contains
all λ copies of every element and aborts if this is not the case.

Intuitively, this check allows the parties to detect if the server
omitted any element in the intersection since, in order to cheat, the
server has to guess which elements in I correspond to the λ copies

of the element it wishes to omit. But this still does not prevent the
server from cheating in two specific ways: (1) the server can return
an empty intersection; or (2) it can claim to each party that all the
elements from the party’s input set are in the intersection.

We address these cases by guaranteeing that the set intersection
is never empty and never contains all elements of an input set. To
do this, the parties agree on three dummy sets D0, D1 and D2

of strings outside the range of possible input values U such that
|D0| = |D1| = |D2| = t. The first party then adds the set ∆1 =
D0 + D1 to Sλ1 and the second party adds the set ∆2 = D0 + D2

to the set Sλ2 . We denote the resulting sets Sλ1 + ∆1 and Sλ2 +
∆2, respectively. Now, the intersection I of (Sλ1 + ∆1) ∩ (Sλ2 +
∆2) cannot be empty since D0 will always be in it and it cannot
consist entirely of one of the sets Sλ1 +∆1 or Sλ2 +∆2 since neither
of them are contained in the intersection. We note that the three
dummy sets D0, D1 and D2 need to be generated only once and
can be reused in multiple executions of the set intersection protocol.
The parties can generate the dummy values using a pseudorandom
number generator together with a short shared random seed for the
PRG, which they can obtain running a coin-tossing protocol. We
can easily obtain dummy values inside and outside the range U by
adding a bit to the output of the PRG, where this bit is set to zero
for values inside the range and to one for values outside the range.

It turns out that adding the dummy sets provides an additional
benefit. In particular, in order to cheat, by say removing or adding
elements, the server not only needs to ensure λ copies remain con-
sistent, but also has to make sure that it does not remove or add
elements from the corresponding dummy sets. In other words, we
now have two parameters t and λ and as stated in Theorem 3.2,
the probability of undetected cheating is 1/tλ−1 + negl(k) where
k is the computational security parameter used for the PRP. There-
fore, by choosing the right values of t and λ one can significantly
increase security against a malicious server.

Fig. 2 presents the details of our protocol and its security is for-
malized in Theorems 3.2 and 3.3 below whose proof is in Appendix
C. This two theorem consider all possible admissible subsets of the
participants that can be corrupted by the adversary.

COIN-TOSS. The coin tossing protocol is abstracted as a coin toss-
ing functionality FCT which takes as input a security parameter k
and returns a k-bit string chosen uniformly at random. This func-
tionality can be achieved by simply running a simulatable coin toss-
ing protocol [50, 48]. Such a protocol emulates the usual coin-
flipping functionality in the presence of arbitrary malicious adver-
saries and allows a simulator who controls a single player to control
the outcome of the coin flip. We note that the coin-tossing step is
independent of the parties’ input sets and can be performed offline
(e.g., for multiple instantiations of the protocol at once). After this
step, the two parties interact directly with the untrusted server until
they retrieve their final result. As a result, it has negligible effect
on efficiency of our constructions and is omitted from those discus-
sions.

Our set intersection protocol in Fig. 2 provides security in the
case of one malicious party, which can be any of the parties. We
state formally our security guarantees in the next two theorems.

THEOREM 3.2. If F is pseudo-random, and (1/t)λ−1 is negli-
gible in the statistical security parameter s, the protocol described
in Fig. 2 is secure in the presence of a malicious server and honest
P1 and P2.



Setup and inputs: Let F : {0, 1}k × U → {0, 1}≥k be a
PRP and t, λ ≥ 1. P1 andP2 have sets S1 ⊆ U and S2 ⊆ U
as input, respectively, while the server has no input:

1. P1 chooses sets D0,D1,D2 ⊆ D 6= U such that
|D0| = |D1| = |D2| = t and sends them to P2;

2. P2 checks that D0,D1,D2 were constructed cor-
rectly and aborts otherwise;

3. P1 and P2 use FCT to agree on a random k-bit key
K;

4. each party Pi for i ∈ {1, 2} sends the set

Ti = πi

(
FK

(
Sλi + ∆i

))
to the server, where πi is a random permutation and
∆i = D0 + Di;

5. the server returns the intersection I = T1 ∩T2;
6. each party Pi aborts if:

(a) either D0 6⊂ F−1
K (I) or Di ∩ F−1

K (I) 6= ∅
(b) there exists x ∈ Si and α, β ∈ [λ] such that

x‖α ∈ F−1
K (I) and x‖β 6∈ F−1

K (I);

7. each party computes and outputs the set(
F−1
K

(
I
)
−D0

)−λ
.

Figure 2: A Server-aided PSI protocol with malicious security

THEOREM 3.3. The protocol described in Fig. 2 is secure in
(1) the presence of malicious P1 and an honest server and P2; and
(2) a malicious P2 and honest server and P1.

COVERT SECURITY. By setting the two parameters t and λ prop-
erly, one can aim for larger probabilities of undetected cheating and
hence achieve covert security (vs. malicious security) in exchange
for better efficiency. For example, for deterrence factor of 1/2, one
can let t = 2 and λ = 2.

EFFICIENCY. Each party Pi invokes the PRP λ|Si| + 2t times
while the server performs a “plaintext" set intersection on two sets
of size |S1|+ 2t and |S2|+ 2t, with no cryptographic operations.

Once again, the protocol can be run asynchronously with each
party connecting at a different time to submit his message to the
server and later to obtain his output.

3.3 Fair Server-aided PSI
While the protocol in Fig. 2 is secure against malicious parties, it
does not achieve fairness. For example, a malicious P1 can submit
an incorrectly structured input that could cause P2 to abort after re-
ceiving an invalid intersection while P1 learns the real intersection.
To detect this kind of misbehavior (for either party) and achieve
fairness, we augment the protocol as follows.

Suppose we did not need to hide the input sets from the server but
still wanted to achieve fairness. In such a case, we could modify the
protocol from Fig. 2 as follows. After computing the intersection
I = T1 ∩ T2, the server would commit to I (properly padded so
as to hide its size) and ask that P1 and P2 reveal their sets S1 and
S2 as well as their shared key K. The server would then check the
correctness of T1 and T2 and notify the parties in case it detected
any cheating (without being able to change the intersection since

it is committed). This modification achieves fairness since, in the
presence of a malicious P1, P2 will abort before the server opens
the commitment. In order to hide the sets S1 and S2 from the
server, it will be enough to apply an additional layer of the PRP. The
first layer will account for the privacy guarantee while the second
layer will enable the detection of misbehavior.

The protocol is described in detail in Fig. 3 and the next two
theorems describe the adversarial settings in which it guarantees
security.

Setup and inputs: Let F : {0, 1}k × U → {0, 1}≥k be a
PRP and t, λ ≥ 1. P1 andP2 have sets S1 ⊆ U and S2 ⊆ U
as input, respectively, while the server has no input:

1. P1 chooses sets D0,D1,D2 ⊆ D 6= U 6=
Range(F ) such that |D0| = |D1| = |D2| = t and
sends them to P2;

2. P2 checks that D0,D1,D2 were constructed cor-
rectly and aborts otherwise;

3. P1 and P2 useFCT to agree on random k-bit keysK1

and K2;
4. each party Pi for i ∈ {1, 2} sends to the server the

set:

Ti = πi

(
FK2

(
FK1(Si)

λ + ∆i

))
where πi is a random permutation.

5. the server computes the intersection I = T1 ∩ T2

and adds enough padding elements to I until its size
is equal to |S1|+ t. We denote this new set by I′.

6. the server then sends a commitment com(I′) to P1

and P2

7. P1 and P2 reveal the sets FK1(S1), FK1(S2),
D0,D1,D2 to the server.

8. the server verifies that each Ti is consistent with the
appropriate opened sets. If not it aborts.

9. the server opens com(I′) and as a result the parties
learn I′ from which they remove the padding ele-
ments to obtain I.

10. each party Pi aborts if:

(a) either D0 6⊂ F−1
K2

(I) or Di ∩ F−1
K2

(I) 6= ∅
(b) there exists x ∈ Si and α, β ∈ [λ] such that

Fk1(x)‖α ∈ F−1
K2

(I) and Fk1(x)‖β 6∈ F−1
K2

(I)

11. each party computes and outputs the set

F−1
K1

((
F−1
K2

(
I
)
−D0

))−λ
.

Figure 3: A fair server-aided PSI protocol

THEOREM 3.4. If F is pseudo-random, and (1/t)λ−1 is negli-
gible in the security parameter s, the protocol described in Fig. 3
is secure in the presence of a malicious server and honest P1 and
P2.

THEOREM 3.5. The protocol described in Fig. 3 is secure in
(1) the presence of malicious P1 and an honest server and P2; and
(2) a malicious P2 and honest server and P1, and also achieves
fairness.



EFFICIENCY. Each party Pi invokes the PRP 2λ|Si| + 2t) times,
while the server executes a “plaintext" set intersection on two sets
of size |S1| + 2t and |S2| + 2t respectively, and also computes a
commitment to this set which can also be implemented using fast
symmetric-key primitives such as hashing.

3.4 Intersection Size-Hiding Server-aided PSI
Our previous protocols reveal the size of the intersection to the
server which, for some applications, may be undesirable. To ad-
dress this we describe a protocol that hides the size of the intersec-
tion from the server as well. The protocol is described in detail in
Fig. 4 and works as follows.

The high-level idea to hiding the size of the intersection from the
server is simply to not have it compute the intersection at all. In-
stead, P1 will compute the intersection while the server will only
play an auxiliary role and help P1. The parties P1 and P2 generate
a shared secret key K1 for a PRP. Similarly, P2 and the server gen-
erate a shared secret key K2, also for a PRP. P1 uses K1 (which it
shares with P2) to send FK1(S1) to the server who usesK2 (which
it shares withP2) to return a random permutation ofFK2(FK1(S1))
to P1. P2 then randomly permutes FK2(FK1(S2)) and sends it to
P1. P1 then computes the intersection of the two sets and sends the
result to P2. Since P2 knows both K2 and K1, he can remove both
layers of encryption and learn the intersection (as usual, he aborts
if the intersection is not well-formatted). Finally, P2 needs to let
P1 learn the intersection as well. Sending the intersection directly
to him is not secure since a malicious P2 may lie about the output.
Instead, P2 will notify the server who will reveal to P1 the random
permutation he used to permute FK2(FK1(S1)). This allows P1 to
learn the location of each element in the intersection in his set and
recover the intersection itself using that information (P1 also aborts
if the intersection is not well-formatted).

We formalize security of this protocol in Theorems 3.6 and 3.7
whose proof is in Appendix E.

THEOREM 3.6. If F is pseudo-random, and (1/t)λ−1 is negli-
gible in the security parameter s, the protocol described in Fig. 4
is secure and intersection-size hiding in the presence of a malicious
server and honest P1 and P2.

THEOREM 3.7. The protocol described in Fig. 4 is secure in
(1) the presence of malicious P1 and an honest server and P2; and
(2) a malicious P2 and honest server and P1.

EFFICIENCY. P1 invokes the PRP, λ|S1| + 2t times. He also per-
forms the “plaintext" set intersection on two sets of size |S1| + 2t
and |S1|+2t respectively. P2 invokes the PRP, 2(λ|S1|+2t) while
the server invokes the PRP λ|S1|+ 2t.

4 Our Implementation
In this section we describe the details of our implementation, in-
cluding the primitive choices, optimizations and parallelization tech-
niques we utilized.

We implemented three of our protocols i.e. the protocol de-
scribed in Figure 1, which is secure against a semi-honest server,
that of Figure 2 which is secure against a malicious server, and pro-
tocol of Figure 4 which in addition hides the intersection size from
the server. In the following, we will refer to these protocols by SH-
PSI , MPSI , and SizePSI , respectively. Our implementation is
in C++ and uses the Crypto++ library v.5.62 [18]. The code can

Setup and inputs: Let F : {0, 1}k × U → {0, 1}≥k be a
PRP and t, λ ≥ 1. P1 andP2 have sets S1 ⊆ U and S2 ⊆ U
as input, respectively, while the server has no input:

1. P1 chooses sets D0,D1,D2 ⊆ D 6= U such that
|D0| = |D1| = |D2| = t and sends them to P2;

2. P2 checks that D0,D1,D2 were constructed cor-
rectly and aborts otherwise;

3. P1 and P2 use FCT to agree on a random k-bit key
K;

4. The party P2 and the server use the functionality FCT

to generate a k-bit key K2

5. P1 sends to the server:

T1 = π1

(
FK1

(
Sλ1 + ∆1

))
6. The server returns to P1:

T′1 = π3

(
FK2

(
T1

))
,

where π3 is a random permutation
7. P2 sends

T′2 = π2

(
FK2

(
FK1

(
Sλ2 + ∆2

)))
to P1 where π2 is a random permutation

8. P1 computes I = T′1 ∩ T′2 and returns the result to
P2

9. Let I−1 = F−1
K1

(
F−1
K2

(
I
))

10. P2 checks that I has the right form and aborts if

(a) either D0 6⊂ I−1 or Di ∩ I−1 6= ∅
(b) there exists x ∈ Si and α, β ∈ [λ] such that

x‖α ∈ I−1 and x‖β 6∈ I−1 for some β ∈ [λ].

11. If P2 does not abort, it notifies the server who sends
π3 to P1. P1 uses π3 to map the values in T′1 to the
values in T1 and respectively S1. Since I ⊂ T′1, P1

learns the values in the set I−1.
12. P1 checks that I has the right form as in Step 10 and

aborts if the check fails.
13. Each party computes and outputs the set(

I−1 −D0

)−λ
.

Figure 4: An intersection size-hiding server-aided PSI

be compiled on Windows and Linux and will be released publicly
once when the paper is made public.

Throughout, we will sometimes refer to parties that are not the
server as clients.

To make our implementation scale to very large sets, we had to
optimize each of these steps, use efficient data structures, and make
extensive use of the parallelizability of our protocols via multi-
threading.

4.1 Client Processing
The main operations during the client processing step are the ap-
plication of PRP to generate labels and the application of a random
permutation to shuffle the elements around. We now describe how



each of these operations is implemented.

PRP INSTANTIATION. We considered two possibilities for imple-
menting the PRP: (1) using the Crypto++ implementation of SHA-
1 (as a random oracle); (2) using the Crypto++ implementation of
AES which uses the AES Instruction Set (Intel AES-NI). We ran
micro benchmarks with over a million invocations which showed
that the Crypto++ AES implementation was faster than the SHA-1
implementation. As a result, we chose the Crypto++ AES imple-
mentation to instantiate the PRP. For set elements that are larger
than the AES block size, one can either use AES in the CBC mode
or hash the values before applying AES.

RANDOM PERMUTATION INSTANTIATION. We instantiated the ran-
dom permutations using a variant of the Fisher-Yates shuffle [49].
Let S ⊂ U be a set and A be an array of size |S| that stores each
element of S. To randomly permute S, for all items A[i], we gen-
erate an index j ≤ [|S|] uniformly at random and swap A[i] with
A[j]. We sampled the random j by applying AES to A[i] and using
the first log(|S|) bits of the output.

COMMUNICATION AND TRUNCATION. For our protocols—especially
when running over the Internet— communication is the main bot-
tleneck. Our experiments showed that the send and receive func-
tions (on Windows Winsock) have a high overhead and so invoking
them many times heavily slows down communication. To improve
performance we therefore store the sets Ti in a continuous data
structure in memory, which allows us to make a single invocation
of the send function. Naturally, our memory usage becomes lower-
bounded by the size of the sets Ti.

Since we need to send all labels, the only solution to reduce com-
munication complexity is to truncate the labels. Note that the out-
put of a PRP is random so any substring of its output is also a
random bit-string. This property allows us to truncate the output of
AES based on the number of labels and the desired error tolerance.
The desired error toleration will be directly related to the proba-
bility of collision in the truncated AES output. In particular, when
working with a set S, and truncating the AES output to ` bits, the
probability of collision is less than |S|/2`/2 (this follows from the
birthday problem). So when working with sets of tens or hundreds
of millions of elements, to reduce the probability of any collision
to, say 2−20, we need to choose 80 ≤ ` ≤ 100. Note that while
the labels are no longer the output of a PRP, correctness can still be
achieved if the clients store a table that maps the labels to the set
elements.

4.2 Server Intersection
For the server intersection step (or the client intersection in case
of SizePSI ), we considered and implemented two different ap-
proaches. The first is a custom server implementation whereas the
second is based on the open-source Redis NoSQL database.

OUR CUSTOM SERVER. The trivial pair-wise comparison approach
to compute set intersection has a quadratic complexity and does not
scale to large sets. We therefore implemented the folklore set inter-
section algorithm based on hash tables, wherein the server hashes
the elements of the first set into a hash table, and then tries to lookup
the elements of the second set in the same table. Any element with
a successful lookup is added to the intersection. The server then
outputs a boolean vector indicating which elements of the second
set are in the intersection and which are not.

To implement this algorithm, we used the dense_hash_set

and dense_hash_map implementation from the Sparsehash li-
brary [26]. In contrast to their sparse implementation which fo-
cuses on optimizing memory usage, the dense implementation fo-
cuses on speed. The choice of data structure was critical in our
ability to scale to billion-element datasets, in terms of both mem-
ory usage, and computational efficiency.

THE REDIS SERVER. As an alternative to our custom implemen-
tation of the server, we also used the Redis NoSQL database. Re-
dis is generally considered to be one of the most efficient NoSQL
databases and is capable of operating on very large datasets (250
million in practice). Redis is open source and implemented in
ANSI C (for high performance). It is also employed by several
cloud-based companies such as Instagram, Flickr and Twitter. This
highlights an important benefit of our PSI protocols (with the ex-
ception of the size-hiding protocol), which is that the server-side
computations consists only of set intersection operations. As such
any database can be used at the server.

Looking ahead, we note that our experiments were run on a Win-
dows Server and that the Redis project does not directly support
Windows. Fortunately, the Microsoft Open Tech group develops
and maintains an experimental Windows port of Redis [57] which
we used for our experiments. Unfortunately, the port is not produc-
tion quality yet and we therefore were not able to use it for very
large sets, i.e. for sets of size larger than 10 million (also the reason
for X sign in once row of table 4).

We integrated the windows port of Redis C client library, hire-
dis [60] in our implementation with minor modifications. Instead
of sending the labels to the server, we send them as sets of insertion
queries to the Redis server. This is followed by a set intersection
query which returns the result. We note that our custom server uses
the same interface. To improve the mass insertion of sets, we em-
ploy the Redis feature pipelining. Pipelining adds the commands to
a buffer according to the Redis protocol, and sends them as they are
ready. At the end we have to get a reply for each of the commands.
The extra delay caused by the last step, as well as the overhead of
Redis protocol, makes Redis less efficient than our implementation.

4.3 Output Checks
Recall that in the case of MPSI , the clients have to perform various
checks on the output set I they receive from the server. In particular,
they need to verify that each element in I has λ copies and that D0

is in I whereas Di is not. We use two additional data structures
to facilitate these verification steps. The data structures are created
by each client separately. The first structure is a dictionary mv,
implemented with dense_hash_set, that maps the indices of
the elements in (the truncated version of) Ti to the index of the
element in Si that it is associated with (note that all λ copies of
the same element are mapped to the same index). The (truncated)
labels of the elements in D0 and D1 are mapped to the values −2
and −3, respectively. The (truncated) labels of the elements in D0

are then inserted into a dense_hash_set data structure.
During verification, the clients can now easily use the mv struc-

ture and the dense_hash_map map to keep track of the number
of copies of each element in Si and to quickly check that D0 is
present and Di is not.

4.4 Parallelizability and Multi-threading
One of the main advantages of our protocols is their potential for
parallel computation. We have used the POSIX thread library for
the portable implementation of threads and their synchronization.



Figure 5 demonstrates the order of execution for the multi-threaded
implementation of our SHPSI and MPSI protocols (a similar multi-
threading approach was applied to SizePSI as well). At the begin-
ning of the protocol, each client creates a certain number TCP con-
nections with server and starts a thread per each connection. In step
1, clients start preparing the values, and send them in parallel to the
server. In steps 2,3, and 4, server inserts the elements in the hash
table. Since Sparsehash is not a thread-safe data structure, these
steps can not be performed in parallel. Finally, in step 5, server
performs a parallel lookup of client 2’s set and returns the result of
intersection in a boolean vector. We report on the effect of multi-
threading on the running time of our protocols in the next section.

Azure Server

Client 1

(1)(1) (1)

(3)
(2)

(4)

Client 2

(1) (1)

(5)(5) (5)

(1)

Figure 5: Diagram of thread synchronization for SHPSI and
MPSI protocols (for 3 threads).

5 Experimental Evaluation
Next, we evaluate the performance, and scalability of our imple-
mentations. In particular, we evaluate the effect of multi-threading
on efficiency of our protocols, determine scalability of our SHPSI
protocol to billion-element sets, and compare efficiency of our pro-
tocol with best standard two-party PSI protocols as well as a simple
non-private solution in order to measure the overhead of achieving
privacy.

We generate the input sets on the fly and as part of the execution.
Each element is a 16 byte value. We note that due to the nature
of our implementation, the size of the intersection does not effect
computation or communication, i.e. the server does not send back
the intersection but instead, sends back a bit vector with as many
bits as each clients’ set indicating whether the element is in the
intersection or not.

5.1 Effect of Multi-threading
To demonstrate the effect of parallelization, we run an experiment
where we increase the number of threads for a given set size (10
Million) for both the SHPSI and the SizePSI protocol. Results

are presented in two separate graphs in Figure 5.1. The use of par-
allelization particularly improves the communication time, which
dominates the total running time of our protocols. We enjoy up to a
factor of 3 improvement in total running time by increasing thread
numbers.
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Figure 6: Effect of multi-threading on the runtime of our pro-
tocols. Set size is 10 Million.

5.2 Scalability of our SHPSI protocol
We examine the scalability of our protocol in the WAN setup. We
run SHPSI for sets ranging from 100K to 1 billion elements. The
total running times and the size of communication (for each client)
are provided in Table 1. Note that even for sets with 1 billion ele-
ments, our protocol runs on the order of minutes.

We used 3 Windows Azure services connected over the Internet.
The server was an 8-core Windows server 2012 VM with 14GB of
memory located in the West US region. For each client, we used a
8-core Windows server 2012 VM with 7GB of memory. The clients
were both located in the East US region to guarantee that they were
not on the same network as the server. We chose to run our clients
in the Cloud (as opposed to locally) to provide a somewhat uniform
platform that can be used by others to reproduce our experiments.
For the one billion set size, we increase client’s RAM to 14 GB and
the server’s to 24GB.

Set Size Threads # Comm. Total
100K 20 1 532 (ms)
1M 20 10 1652 (ms)

10M 100 114 7 (s)
100M 100 1239 53 (s)

1B 100 12397 580 (s)

Table 1: Scalability of our SHPSI protocol in the WAN setup.
Communication is in MegaBytes. s stands for second and ms
stands for milliseconds.

5.3 Comparison with Standard PSI
We compare our protocol SHPSI which provides security against
a semi-honest server and our SizePSI protocol with malicious se-
curity against the fastest-known two-party PSI protocol [23] (we
used an implementation provided to us by the authors). We stress
that the protocol of [23] is secure against semi-honest adversaries
in the standard MPC setting. The point of this comparison is simply
to demonstrate that server-aided protocols can allow for significant
efficiency improvements over standard two-party protocols. The



provided implementation of [23] is intended for LAN setting and
can be compiled under Linux, so we used the same setup for our
comparison. In this setting, our experimental setup consisted of
3 machines, each of which was a 3GHz Xeon server with 16GB
of memory running Linux as their OS. The timings are provided
in Table 2. They include the total running time for each protocol,
starting from when the clients start running until they output the re-
sult of the intersection (i.e., the communication times is included).
we only went up to sets of 100K elements in order to to keep the
running time of protocol of [23] manageable.

Set size [23] (ms) SHPSI (ms) SizePSI (ms)
1000 600 2 13

10000 6725 12 112
50000 116155 59 488
100000 559100 117 996

Table 2: Comparison of SHPSI and SizePSI with the state-of-
art two-party PSI protocol of [23]. All times include communi-
cation (10 Threads). ms stands for milliseconds.

5.4 Comparison with Plaintext Set Intersec-
tion

In this experiment, we compare SHPSI , and SizePSI (with λ = 3
and t = 1000000, yielding s ≈ 40) with a non-private plaintext
set intersection for a wide range of set sizes. In particular, we im-
plemented and tested a non-private server-aided set intersection ex-
ecution, where the clients send their plaintext sets and receive the
intersection from the server. We employed all the optimizations
and parallelization applied to our own protocols (such as multi-
threading, choice of data structures etc.), to the plaintext protocol
as well. This experiment was just so that we could compare the
overhead incurred by our protocols over plaintext intersection. The
times are in Table 3. Note that that our SHPSI protocol is at most
10% slower than the plaintext intersection for most set sizes while
SizePSI is a factor of 4-10 slower. This is in contrast to the setting
of standard MPC where going from semi-honest to malicious secu-
rity increases computation and communication by orders of magni-
tude.

Set Size SHPSI C. SizePSI C. Plain T. SHPSI T. SizePSI T.
100K 1MB 7.4MB 530 532 2000
1M 10MB 74.3MB 1600 1652 10232

10M 114MB 619MB 7102 7717 82323
20M 228MB 1.2GB 10780 11662 185123

Table 3: Comparison of our SHPSI and SizePSI to plaintext
set intersection. T. is short for total time. C. is short for com-
munication and times are in millisecond.

5.5 Porting to NoSQL Databases
in our final experiment we replace the server with a Redis server, to
which the clients talk using insertion and set intersection queries.
Table 4 show details of some of our timings. The experiment shows
a nice feature of our SHPSI and MPSI protocols i.e. that they
can be easily plugged into existing noSQL database implementa-
tion without the need to make any changes to them.

Set Size Plain T. SHPSI T. MPSI T.
1000 380.3 381.0 857.4

10000 934.0 939.7 2020.0
100000 2170.4 2239.8 7368.3

1000000 5798.9 6496.3 61544.9
10000000 47041.5 54020.5 X

Table 4: Comparison of our SHPSI and MPSI to plaintext set
intersection when server is implemented by Redis. T. is short
for total time in milliseconds.
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APPENDIX
A Server-aided PSI vs. SSE
In this Section, we provide a comparison between the notions of
server-aided PSI and SSE and, in particular, to index-based SSE
constructions [59, 34, 13, 16, 14, 46, 45, 12]. An index-based SSE
scheme takes as input a secret key K and a dataset {(wi, vi)}ni=1,
where the wi’s are keywords from a universe W and the vi’s are
arbitrary strings. It outputs an encrypted index γ that can be queried
using tokens generated from the keyK and a keywordw. So, given
a token τ for keyword w, γ can be queried to recover the data item
vi associated with w.

SERVER-AIDED PSI FROM SSE. Informally, a server-aided PSI
protocol can be constructed from any (index-based) SSE scheme
as follows. The parties P1 and P2 first generate two shared keys:
K1 for the SSE scheme; and K2 for a pseudo-random permuta-
tion π. P1 sends to the server an encrypted index for the dataset
{(xi, πK2(x1))}ni=1, where S1 = {x1, . . . , xn} ⊆ W, and P2

sends a set of tokens (τ1, . . . , τ|S2|), where τi is the token for the
ith element in P2’s set S2 ⊆W.

To compute the intersection, the server queries γ with each token
τ1, . . . , τ|S2| and returns the recovered items to P1 and P2 who
invert the PRP to find the intersection. 3

SSE FROM SERVER-AIDED PSI. Similarly, SSE schemes can be
constructed from a certain kind of server-aided PSI protocol. More
precisely, from protocols that: (1) include a setup phase to generate
a shared key; and (2) require a single round of communication with
the server, i.e., P1 and P2 send a single message to the server and
the server returns a single message. Note that all our protocols have
this structure and therefore yield SSE schemes.

Given a dataset {(wi, fi)}ni=1, where the fi’s are files, the client
works as follows. It first encrypts the files using a symmetric en-
cryption scheme which results in ciphertexts (c1, . . . , cn). It then
simulates the setup phase of the protocol (playing both P1 and P2)
n times in order to generate n keys (K1, . . . , kn). Once the keys
are generated it executes n simulations of P1, using the keyKi and
the input set {w : w ∈ fi} for the ith execution (herew ∈ fi means
that there exists a pair (w, fi) in the dataset). In each execution, P1

generates a message for the server msgi. The client then sends
the encrypted files (c1, . . . , cn) and γ = (msg1,1, . . . ,msg1,n)
to the server.

To search for a disjunction of keywords w1∨ · · ·∨wd, the client
executes n simulations of P2 (using the same coins as before), us-
ing the keyKi and the input set {w1, . . . , w`} for the ith execution.
In each execution, P2 will generate a message msg2,i. The client
then sends the messages τ = (msg2,1, . . . ,msg2,n) to the server.

3This can be made more efficient using similar optimizations as
those described in Section 4.

https://code.google.com/p/sparsehash/
http://eprint.iacr.org/2003/216
https://github.com/MSOpenTech/redis
https://github.com/texnician/hiredis-win32


Given γ and τ as above, the SSE server does the following: for
all i ∈ [n], it simulates the PSI server with messages msg1,i and
msg2,i as input and returns a result msg3,i to the client. From
the set of results (msg3,1, . . . ,msg3,n), the client can extract the
intersections between the keywords in fi and the disjunction and if
that intersection is non-empty then the ith file matched the query.

Note that the resulting schemes have several limitations. First,
if the underlying server-aided PSI protocol is not size-hiding (with
respect to the server), the SSE scheme leaks the number of terms (in
the disjunction) that are contained in each file. Another limitation is
that the search time for the server and the token size are linear in the
number of files. Finally, we point out that if the underlying server-
aided PSI protocol does not leak the intersection to the server (as
required by our definition) then only the client can learn whether
a file matched its query. This is undesirable for SSE as it requires
an extra round of interaction for the client to then download the
relevant files.

B Proof of Theorem 3.1
Theorem 3.1. The protocol described in Fig. 1 is secure in the
presence (1) a semi-honest server and honest parties or (2) an hon-
est server and any collusion of malicious parties.

PROOF SKETCH. We construct a simulator SIMn+1 who re-
ceives |S1|, |S2| and |S1 ∩ S2| from the functionality and simu-
lates a semi-honest server Pn+1 by emulating the execution of the
protocol between Pn+1 and honest P1 through Pn. SIMn+1 first
generates n arbitrary sets S̃1 through S̃n such that |S̃i| = |Si| and
that |

⋂n
i=1 S̃i| = |

⋂n
i=1 Si|. It then creates n sets T1, . . . ,Tn

such that

Ti = πi

(
FK
(
S̃i
))
,

where πi is a random permutation and K is a random k-bit key.
SIMn+1 then sends T1 through Tn to the server who returns a
set I =

⋂n
i=1 Ti. SIMn+1 then outputs whatever the server Pn+1

outputs. It follows by construction and by the pseudo-randomness
of F that the server’s view is indistinguishable during its view in
the real-model execution and, therefore, so is its output.

We now construct a simulator SIM1 that simulates an adversary
A who corrupts any collusion of malicious parties C ⊂ [n] by
emulating the execution of the protocol between those parties and
the honest parties in [n]\C and the honest Pn+1. SIM1 receives the
key K from the FCT functionality. After receiving the set of labels
Ti for i ∈ C, it recovers Si by computing F−1

K (Ti) and sends
it to the trusted party. After receiving the intersection

⋂n
i=1 Si,

it computes I = FK(
⋂n
i=1 Si) and sends it to A. Finally, SIM1

outputs whatever A outputs. It follows by construction and by the
pseudo-randomness of F that the joint distribution of views of Pi
for i ∈ C is indistinguishable from their joint view during a real-
model execution.

C Proofs of Theorems 3.2 and 3.3
We begin by establishing a Lemma that will be useful for the proof
of Theorem 3.2. Informally, the Lemma bounds the probability that
a (polynomial-time) adversary can identify the labels of all λ copies
of some set Z ⊂ X given a set π

(
FK(Xλ + Y)

)
of randomly

permuted labels.

LEMMA C.1. Let X ⊂ U and Y ⊂ D 6= U . If F : {0, 1}k ×
U → {0, 1}≥k is pseudo-random, then for all PPT adversaries A,

Pr

[
A
(
π
(
FK
(
Xλ + Y

)))
= FK(Zλ)

]

≤

(
|X|
|Z|

)
·

(
|FK(Xλ + Y)|

λ · |Z|

)−1

+ negl(k),

where the probability is over the choice of π and K and the coins
of A, and Z is some subset of X.

PROOF SKETCH. Note that the pseudo-randomness of F guar-
antees that each label ` ∈ π(FK(Xλ + Y)) reveals no partial
information about the element it encodes. In addition, the random
permutation π guarantees that the position of a label ` reveals no
partial information about the element it encodes.

It follows that, given π(FK(Xλ + Y)), a polynomial-time ad-
versaryA will output a set FK({x}λ) for some x ∈ X, with prob-
ability at most

|X| ·

(
|FK(Xλ + Y)|

λ

)−1

+ negl(k),

since the best it can do is guess the labels. More generally, it will
output a set FK(Zλ) for some Z ⊂ X, with probability at most(

|X|
|Z|

)
·

(
|FK(Xλ + Y)|

λ · |Z|

)−1

+ negl(k).

We are now ready to proceed to the proof of Theorem 3.2.
Theorem 3.2. If F is pseudo-random, and (1/t)λ−1 is negli-

gible in the statistical security parameter s, the protocol described
in Fig. 2 is secure in the presence of a malicious server and honest
P1 and P2.

PROOF SKETCH. We construct a simulator SIM3 who receives
|S1|, |S2| and |S1∩S2| from the functionality and simulates a ma-
licious server by emulating the execution of the protocol between
the server and honest P1 and P2. SIM3 first generates two arbi-
trary sets S̃1 and S̃2 such that |S̃1| = |S1|, |S̃2| = |S2| and that
|S̃1∩S̃2| = |S1∩S2|. It then generates three sets D0,D1,D2 ∈ D
each of size t and constructs sets Ti for i ∈ {1, 2} such that

Ti = πi

(
FK

(
S̃λi + ∆i

))
,

where π1 and π2 are random permutations andK is a random k-bit
key. It then sends T1 and T2 to server who returns a set I. SIM3

performs the following checks and sends an abort message if any
of them succeed:

1. either D0 6⊂ F−1
K (I) or Di ∩ F−1

K (I) 6= ∅
2. there exists x ∈ Si and α, β ∈ [λ] such that x‖α ∈ F−1

K (I)
and x‖β 6∈ F−1

K (I)

It follows by construction and by the pseudo-randomness of F
that, conditioned on the server returning I = T1 ∩ T2, the view
of the server in this simulated execution is indistinguishable from
its view in the real-model execution with honest P1 and P2. Note
that if the server returns an I 6= T1 ∩T2, the only difference in the
executions will be if all the checks fail. To see why, observe that
if the checks fail then P1 and P2 will output some I 6= S1 ∩ S2



in the real execution, whereas they will output I = S1 ∩ S2 in the
ideal execution since their output is computed by the trusted party.
We therefore need to show that the probability that (1) the server
returns an incorrect intersection I and (2) that SIM3 does not abort,
is negligible.

Claim. Pr[I 6= T1 ∩ T2

∧
SIM3 does not abort] ≤ 1/tλ−1 +

negl(k).

Clearly, if I 6= T1 ∩ T2 then I either contains elements not in
T1 ∩ T2 or is missing elements from T1 ∩ T2. We will bound
the probability that the server either adds elements or removes ele-
ments without causing an abort.

We now bound the probability that the server adds elements from
S1 that are outside the intersection (i.e., from the set S1 − (S1 ∩
S2) = S1 − S2) in such a way that SIM3 does not abort, i.e., in
such a way that the three checks above are satisfied. Note that in
order to do this, given T1 and T2, the best the server can do is to
try to identify the labels FK(Rλ) out of the set of labels T1 −T2

for some R ⊂ S1 − S2. But note that

T1 −T2 = π

(
FK

((
S1 − S2

)λ
+ D1

))
,

for some random permutation π, therefore, by setting X = S1−S2,
Y = D1 and Z = R in Lemma C.1 and noting that

|T1 −T2| = λ · |S1 − S2|+ t,

it follows that the server will output FK(Rλ) with probability at
most

ε =

(
|S1 − S2|
|R|

)
·

(
λ · |S1 − S2|+ t

λ · |R|

)−1

+ negl(k).

Setting n = |S1|, m = |S1 ∩ S2| and r = |R|, we have

ε =

(
n−m
r

)
·

(
λ · (n−m) + t

λ·

)−1

+ negl(k)

=
(n−m)···(n−m−r+1)

r···1
((n−m)λ+t)···((n−m−r)λ+t+1)

(rλ)···1

+ negl(k)

≤ 1
(n−m)λ+t

rλ
· · · (n−m)λ+t+r+1

r+1

+ negl(k)

≤ 1

tr(λ−1)
+ negl(k)

In other words, the probability that the server adds elements from
S1−S2 without SIM3 sending an abort message is at most negligi-
bly close to 1/tr(λ−1). The server’s best strategy is therefore to set
r = 1 and only add a single element to the intersection. Note, how-
ever, that this achieves a still small probability of 1/tλ−1, which is
negligible in λ.

A similar analysis holds for the case where the server adds ele-
ments from S2 − S1.

Next, we consider the case where the server removes items from
the intersection S1 ∩ S2 in such a way that SIM3 does not abort
(again, in such a way that the three checks above are satisfied). To
do this, given T1 and T2, the best the server can do is to try to
identify the labels FK(Rλ) from the set of labels

T1 ∩T2 = π

(
FK
(
(S1 ∩ S2)λ + D0

))

for some set R ⊂ S1∩S2−D0 ⊂ S1∩S2. Setting X = S1∩S2,
Y = D0 and Z = R and applying Lemma C.1, we have that the
server will succeed with probability at most

ε =

(
|S1 ∩ S2|
|R|

)
·

(∣∣FK ((S1 ∩ S2)λ + D0

)∣∣
λ · |R|

)−1

+ negl(k).

Setting m = |S1 ∩ S2| and r = |R| we have

ε =

(
m

r

)
·

(
λ ·m+ t

λ · r

)−1

=
m···(m−r+1)

r···1
(mλ+t)···((m−r)λ+t+1)

(rλ)···1

+ negl(k)

≤ 1
mλ+t
rλ
· · · (m−r)λ+r+t+1

r+1

+ negl(k)

≤ 1

tr(λ−1)
+ negl(k)

The above probability is maximized when r = 1, i.e., when the
server removes a single element from the intersection. Thus, the
maximum probability with which the server can remove elements
from the intersection without SIM3 aborting is 1/tλ−1, which is
negligible in λ.

Theorem 3.3. The protocol described in Fig. 2 is secure in (1)
the presence of malicious P1 and an honest server and P2; and (2)
a malicious P2 and honest server and P1.

PROOF SKETCH. We first show that the protocol is secure in the
presence of a malicious P1 and honest server and P2. We construct
a simulator SIM1 that that simulates a corrupted P1 by emulating
the execution of the protocol between P1 and honest P2 and server.

Upon receiving the sets D0,D1,D2 from P1, SIM1 checks that
they are correctly formed and aborts if they are not. If they are
correctly formed, it proceeds to simulating the coin tossing step
with P1 and sets the output to a randomly chosen key K. After
receiving T1, it computes F−1

K (T1) and checks that (1) the result
includes D0; (2) that the result does not contain any elements of
D2; and (3) that the set F−1

K (T1)−D1 contains at least λ copies
of each element. If any of the checks fail it aborts, otherwise it
proceeds to recover the set:

S1 =

(
F−1
K (T1)−D0 −D1

)−λ
.

SIM1 then sends S1 to the trusted party and receives the set S1∩S2

from which it computes

I = π

(
FK

(
(S1 ∩ S2)λ + D0

))
.

where π is a random permutation. Finally, SIM1 sends I to P1 and
outputs whatever P1 outputs.

It follows by construction and by the pseudo-randomness of F
that, conditioned on P1 generating the sets D0,D1,D2 correctly
and on P1 constructing its set T1 correctly (i.e., so that it includes
λ copies of each element and the set D0), the view of P1 during the
simulation is indistinguishable from its view during the real-model
execution and, therefore, so is its output. If, on the other hand,
either the dummy sets or T1 violate any of the checks performed
by SIM1, both executions abort.



Security against a malicious P2 and honest P1 and server is anal-
ogous to the case of a malcious P1.

D Proof of Theorems 3.4 and 3.5
Theorem 3.4. If F is pseudo-random, and (1/t)λ−1 is negligible
in the security parameter s, the protocol described in Fig. 3 is
secure in the presence of a malicious server and honest P1 and
P2.

Since the proof of security for the case where the server is ma-
licious and P1 and P2 are honest is analogous to the proof of The-
orem 3.2, we omit the proof for the above theorem and focus only
on the cases where either P1 or P2 are malicious.

Theorem 3.5. The protocol described in Fig. 3 is secure in
(1) the presence of malicious P1 and an honest server and P2; and
(2) a malicious P2 and honest server and P1, and also achieves
fairness.

PROOF SKETCH.
Towards showing the first case, we construct a simulator SIM1

that simulates a corrupted P1 by emulating the execution of the
protocol between P1 and honest P2 and server. Upon receiving
the sets D0,D1,D2 from P1, SIM1 checks that they are correctly
formed and aborts if they are not. If they are correctly formed, it
proceeds to simulating the coin tossing steps with P1 and sets the
outputs to randomly chosen keys K1 and K2. After receiving T1,
it computes and sends

S1 = F−1
K1

((
F−1
K2

(T1)−D0 −D1

)−λ)
to the trusted party. Upon receiving the intersection S1 ∩ S2 from
the trusted party, SIM1 a commitment com(I′) to P1, where

I′ = FK2

(
FK1(S1 ∩ S2)λ + D0

)
+ W

where W is a set of padding elements of size |S1|+ t− |I′|. After
receiving FK1(S′1), for some S′1, and D′0,D

′
1,D

′
2 from P1, SIM1

checks that T1 was constructed correctly. If not, it aborts otherwise
it opens the commitment for P1. SIM1 then outputs whatever P1

outputs.
It clearly follows by construction and by the pseudo-randomness

of F that, conditioned on P1 constructing the dummy sets and T1

correctly, it’s view during the simulation is indistinguishable from
its view during the real-model execution and, therefore, that so is
its output. If, on the other hand, either the dummy sets or T1 are
not constructed correctly, both executions will abort before P1 re-
ceives its output. In particular, if T1 violates the checks then the
real-model execution will be aborted by the server before it opens
its commitment, and the ideal-model execution will be aborted by
SIM1 before opening its commitment.

Security against a malicious P2 and honest P1 and server is anal-
ogous to the case of a malicious P1.

E Proof of Theorems 3.6 and 3.7
Theorem 3.6. If F is pseudo-random, and (1/t)λ−1 is negligible
in the security parameter s, the protocol described in Fig. 4 is

secure and intersection-size hiding in the presence of a malicious
server and honest P1 and P2.

PROOF SKETCH. We construct a simulator SIM3 who receives
|S1| = n and |S2| = m from the functionality and simulates the
execution of the protocol with the server. SIM3 generates a random
set S1 ⊂ U of size n as well as sets D0,D1,D2 ⊆ D 6= U and a
PRP key K1. It also runs the coin tossing protocol with the server
to choose a PRP key K2. Then, SIM3 computes a set

T1 = π1

(
FK1

(
Sλ1 + ∆1

))
where ∆1 = D0 ∪D1 and π1 is a random permutation. It sends
T1 to server, and SIM3 receives back from the server the set T′1
that he evaluated. SIM3 checks using K1 that T′1 is of the form
{FK2(sπ3(j)) : sj ∈ T1} for some permutation π3. If it is not,
SIM3 sends an abort message for both P1 and P2 to the ideal func-
tionality. Then SIM3 receives a permutation σ from the server and
if σ 6= π3, the simulator sends to the ideal functionality an abort
message for P1. The views in the real and the ideal executions are
indistinguishable unless in the real execution the server manages
to compute FK2 incorrectly on a subset of values from S1, which
means that he returns a set of incorrect PRP values in T1 that does
not include any elements from D0 ∪D1, and includes all λ copies
of at least one element in the intersection (the probability that the
server adds values to the set of P1 is negligible since it does not
know K1). However, the probability for this negligible as we saw
in the proof for Theorem 3.2.

Theorem 3.7. The protocol described in Fig. 4 is secure in (1)
the presence of malicious P1 and an honest server and P2; and (2)
a malicious P2 and honest server and P1.

PROOF SKETCH.
Malicious P1. We construct a simulator SIMP1 who receives n =
|S1|, m = |S2| and simulates the protocol execution with P1 as
follows. It receives sets D0, D1, D2, checks whether they are
disjoint subsets of D 6= U and if not, sends an abort to P1. The,
it runs the coin tossing protocol with P1 to choose a PRP key K1.
SIMP2 receives a set T1 from P1 and sends back

T′1 = π3

(
FK2

(
T1

))
,

where π3 is a random permutation. The simulator uses K1 to ex-
tract the input set S1 underlying T1. SIMP2 sends S1/(D0 ∪D1)
to the ideal functionality FSPSI and receives back the intersection
set J . SIMP1 constructs a random set S2 of size m that has inter-
section J with S1, and sends to P1 the set

T′2 = π2

(
FK2

(
FK1

(
Sλ2 + ∆2

)))
,

where ∆2 = D0 ∪D2. After P1 returns the intersection I, SIMP2

checks that I−1 = F−1
K1

(
F−1
K2

(
I
))

includes all elements from D0

and none of D2 and also λ copies for each of the d elements in J .
If this check fails, SIMP1 sends an abort message to P1. Otherwise,
SIMP1 sends to P1 the permutation π3. The view in the real and the
simulated execution are indistinguishable unless in the real execu-
tion P1 manages to return an incorrect set intersection that passes
the check for being of the correct form. As we saw in the proof of
Theorem 3.2 this can happen only with negligible probability.



Malicious P2. We construct a simulator SIMP2 who receives n =
|S1|, m = |S2| andinteracts with P2 as follows. It generates sets
D0,D1,D2 ⊆ D 6= U and sends them to P2. It runs the coin toss-
ing protocol with P2 to establish keysK1,K2. Then, it receives the
set T′2 that P2 prepared and extracts the set of input values S2 using
the keysK1 andK2 (any value x such that FK2(FK1(x‖α)) ∈ T′2
for some α ≤ λ). SIMP2 sends S2/(D0 ∪D2) to the ideal func-
tionalityFSPSI and receives back an intersection set J . SIMP2 com-
putes

T′1 =

(
FK2

(
FK1

(
Jλ + ∆1

)))
,

where ∆1 = D0∪D1 and returns to P2 the set T′1∩T′2. If SIMP2

receives from P2 an abort message, it sends the ideal functionality
abort for P1. The views in the real and the ideal executions are
indistinguishable since in both cases P1 receives output only if P2

does not send an abort message. If P1 receives an output set, in
both cases he receives the same intersection set that P2 gets since
the server is honest and sends the correct permutation π3 to P1.
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