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Abstract

Stochastic gradient descent algorithms for training linear and kernel predictors
are gaining more and more importance, thanks to their scalability. While various
methods have been proposed to speed up their convergence, the model selection
phase is often ignored. In this paper, we propose a new kernel-based stochastic
gradient descent algorithm that performs model selection while training, with no
parameters to tune, nor any form of cross-validation. The algorithm estimates over
time the right regularization in a data-dependent way. Optimal rates of conver-
gence are proved under standard smoothness assumptions on the target function.

1 Introduction

Stochastic Gradient Descent (SGD) algorithms are gaining more and more importance in the Ma-
chine Learning community as efficient and scalable machine learning tools. There are two possible
ways to use a SGD algorithm: to optimize a batch objective function, e.g. [14], or to directly opti-
mize the generalization performance of a learning algorithm, in a stochastic approximation way [12].
The second use is the one we will consider in this paper. It allows learning over streams of data,
coming Independent and Identically Distributed (IID) from a stochastic source.

Both in theory and in practice, the convergence rate of SGD for any finite training set critically de-
pends on the step sizes used during training. In fact, often theoretical analyses assume the use of
optimal step sizes, rarely known in reality, and in practical applications wrong step sizes can result
in arbitrary bad performance. While in finite dimensional hypothesis spaces simple optimal strate-
gies are known [1], in infinite dimensional spaces the only attempts to solve this problem achieve
convergence only in the realizable case, e.g. [16], or assume prior knowledge of intrinsic (and un-
known) characteristic of the problem [15, 18, 19, 20]. The only known practical and theoretical way
to achieve optimal rates in infinite Reproducing Kernel Hilbert Space (RKHS) is to use some form
of cross-validation to select the step size that corresponds to a form of model selection [17]. How-
ever, cross-validation techniques would result in a slower training procedure partially neglecting the
advantage of the stochastic training. Also, the situation is exactly the same in the batch setting where
the regularization takes the role of the step size. Even in this case, optimal rates can be achieved
only when the regularization is chosen in a problem dependent way [5, 17].

In this paper we present a novel stochastic parameter-free algorithm, called Parameter-free STOchas-
tic Learning (PiSTOL), that obtains optimal finite sample convergence bounds in infinite dimen-
sional RKHSs. This new algorithm has the same complexity as the plain stochastic gradient descent
procedure and implicitly achieves the model selection while training, with no parameters to tune nor
the need for cross-validation. The core idea is to change the step sizes over time in a data-dependent
way. This is the first algorithm of this kind to have provable optimal convergence rates.
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2 Problem Setting and Definitions

Let X ⊂ Rd a compact set and HK the RKHS associated to a Mercer kernel K : X × X → R im-
plementing the inner product 〈· , ·〉K . The inner product is defined so that it satisfies the reproducing
property, 〈K(x, ·) , f(·)〉K = f(x). For simplicity, we focus on the classification setting and the
performance is measured w.r.t. a loss function ` : R → R+. We will consider L-Lipschitz, that is
|`(x)− `(x′)| ≤ L|x− x′|, ∀x, x′ ∈ R, and H-smooth losses, that is differentiable losses with the
first derivative H-Lipschitz.

Let ρ a fixed but unknown distribution on X × Y , where Y = {−1, 1}. A training set {xt, yt}Tt=1
will consist of samples drawn IID from ρ. Denote by ρX the marginal probability measure on X
and let L2

ρX be the space of square integrable functions with respect to ρX . We will assume that the
support of ρX is X . Define the `-risk of f , as E`(f) :=

∫
X×Y `(yf(x))dρ. Also, define f `ρ(x) :=

arg mint∈R
∫
Y `(yt)dρ(y|x), that gives the optimal `-risk, E`(f `ρ) = inff∈L2

ρX
E`(f). Note that

f `ρ ∈ L2
ρX , but it could not be inHK still in some cases it possible to achieve its performance. Now

we will introduce a parametrization to consider in a smooth way the case that f `ρ belongs or not to
HK .

Let LK : L2
ρX → L

2
ρX the integral operator defined by (LKf)(x) =

∫
X K(x, x′)f(x′)dρX (x′).

There exists an orthonormal basis {Φ1,Φ2, · · · } of L2
ρX consisting of eigenfunctions of LK with

corresponding non-negative eigenvalues {λ1, λ2, · · · } and the set {λi} is finite or λk → 0 when
k → ∞ [6, Theorem 4.7]. Since K is a Mercer kernel, LK is compact and positive. Therefore,
the fractional power operator LβK is well defined for any β ≥ 0. We indicate its range space by

Figure 1: L2
ρX , HK , and LβK(L2

ρX )

spaces, with 0 < β1 <
1
2
< β2.

LβK(L2
ρX ) :=

{
f =

∞∑
i=1

aiΦi :
∑
i:ai 6=0

a2iλ
−2β
i <∞

}
. (1)

By the Mercer’s theorem, we have that L
1
2

K(L2
ρX ) = HK , that

is every function f ∈ HK can be written as L
1
2

Kg for some
g ∈ L2

ρX . On the other hand, by definition of the orthonormal
basis, L0

K(L2
ρX ) = L2

ρX . Thus, the smaller β is, the bigger
this space of the functions will be, see Fig. 1. This space has
a key role in our analysis. In particular, we will assume that
f `ρ ∈ L

β
K(L2

ρX ) for β > 0, that is

∃g ∈ L2
ρX : f `ρ = LβK(g). (2)

3 PiSTOL: Parameter-free STOchastic Learning

The PiSTOL algorithm is in Algorithm 1. The algorithm builds on recent advancement in uncon-
strained online learning [8, 9]. It is very similar to an Averaged Stochastic Gradient Descent (ASGD)
algorithm [21], the main difference being the computation of the solution based on the past gradients,
in line 4. Note that the calculation of ‖gt‖2K can be done incrementally, hence, the computational
complexity is the same as ASGD, in both finite and infinite dimensional spaces. For the PiSTOL
algorithm we have the following convergence guarantee.1

Theorem 1. Assume that the samples (xt, yt)
T
t=1 are IID from ρ, (2) holds for β ≤ 1

2 . Also,
assume that the sequence of xt satisfies ‖k(xt, ·)‖K ≤ 1 and the loss ` is convex, L-Lipschitz, and
H-smooth. Then, setting at = 3L and bt = 3L, the solution of PiSTOL satisfies2

• If β ≤ 1
3 then E[E`(f̄T )]− E`(f `ρ) ≤ Õ

(
max

{
(E`(f `ρ) + 1/T )

β
2β+1T−

2β
2β+1 , T−

2β
β+1

})
.

1The proofs are in [10].
2For brevity, the Õ notation hides polylogarithmic terms.
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Algorithm 1 PiSTOL: Parameter-free STOchastic Learning.
1: Parameters: at, bt > 0
2: Initialize: g0 = 0 ∈ HK
3: for t = 1, 2, . . . do
4: Set αt−1 = at

(
at +

∑t−1
i=1 |`′(yifi(xi))| ‖k(xi, ·)‖K

)
5: Set ft = gt−1

bt−1

αt−1
exp

(
‖gt−1‖2K
2αt−1

)
6: Receive input vector xt ∈ X
7: Update gt = gt−1 − yt`′(ytft(xt))k(xt, ·)
8: end for
9: Return f̄T = 1

T

∑T
t=1 ft

• If 1
3 < β ≤ 1

2 , then E[E`(f̄T )]− E`(f `ρ)

≤ Õ
(

max
{

(E`(f `ρ) + 1/T )
β

2β+1T−
2β

2β+1 , (E`(f `ρ) + 1/T )
3β−1
4β T−

1
2 , T−

2β
β+1

})
.

This theorem guarantees consistency w.r.t. the `-risk. We have that the rate of convergence to the
optimal `-risk is Õ(T−

3β
2β+1 ), if E`(f `ρ) = 0, and Õ(T−

2β
2β+1 ) otherwise. However, for any finite T

the rate of convergence is Õ(T−
2β
β+1 ) for any T = O(E`(f `ρ)−

β+1
2β ). In other words, we can expect

a first regime at faster convergence, that saturates when the number of samples becomes big enough.
This is particularly important because often in practical applications the features and the kernel are
chosen to have good performance that is low optimal `-risk. Using standard excess risk comparison
results, we can also obtain convergence results for the misclassification loss [2].

Regarding the optimality of our results, lower bounds for the square loss are known [17] under
assumption (2) and further assuming that the eigenvalues of LK have a polynomial decay, that is

(λi)i∈N ∼ i−b, b ≥ 1. (3)

Condition (3) can be interpreted as an effective dimension of the space. It always holds for b =
1 [17] and this is the condition we consider that is usually denoted as capacity independent, see the
discussion in [19]. In the capacity independent setting, the lower bound isO(T−

2β
2β+1 ), that matches

the asymptotic rates in Theorem 1, up to logarithmic terms. Even if we require the loss function to
be Lipschitz and smooth, it is unlikely that different lower bounds can be proved in our setting. Note
that the lower bounds are worst case w.r.t. E`(f `ρ), hence they do not cover the case E`(f `ρ) = 0,
where we get even better rates.

4 Related Work

The approach of stochastically minimizing the `-risk of the square loss in a RKHS has been pio-
neered by [15]. The rates were improved, but still suboptimal, in [20], with a general approach for
locally Lipschitz loss functions in the origin. The optimal bounds, matching the ones we obtain for
E`(f `ρ) 6= 0, were obtained for β > 0 in expectation by [19]. Their rates also hold for β > 1

2 , while
our rates, as the ones in [17], saturate at β = 1

2 . In [18], high probability bounds were proved in
the case that 1

2 ≤ β ≤ 1. Note that, while in the range β ≥ 1
2 , that implies fρ ∈ HK , it is possible

to prove high probability bounds [3, 17, 18], the range 0 < β < 1
2 considered in this paper is very

tricky, see the discussion in [17]. In this range no high probability bounds are known without addi-
tional assumptions. All the previous approaches require the knowledge of β, while our algorithm is
parameter-free. Also, we obtain faster rates for the excess `-risk, when E`(f `ρ) = 0.

In the batch setting and square loss, the same optimal rates, but in high probability, were obtained by
[3] for β > 1

2 , and by [17] in the range 0 < β ≤ 1
2 using an additional assumption on the functions

inHK . Again, these approaches require the knowledge of β or a cross-validation procedure.
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Figure 2: Average test errors and standard deviations of PiSTOL and SVM w.r.t. the number of training
samples over 5 random permutations, on a9a, SensIT Vehicle, and news20.binary.

Table 1: The table shows the average logistic loss after one pass over the data (as called progressive
validation error) using a linear kernel.

Dataset # samples/features VW PiSTOL Per-coordinate
a9a 32,561/123 0.3319 0.3412
covtype.binary 581,012/54 0.5525 0.5370
ijcnn1 49,990/22 0.2009 0.1983
new20.binary 19,996/1,355,191 0.2868 0.1734
real-sim 72,309/20,958 0.1247 0.1190
url 2,396,130/3,231,961 0.04999 0.03635

5 Empirical Results

As a proof of concept on the potentiality of this method we have also run few preliminary exper-
iments, to compare the performance of PiSTOL to a kernel SVM using 5-folds cross-validation to
select the regularization weight parameter. The experiments were repeated with 5 random shuffles,
showing the average and standard deviations over three datasets.3 The latest version of LIBSVM was
used to train the SVM [4]. We have that PiSTOL closely tracks the performance of the tuned SVM
when a Gaussian kernel is used. Also, contrary to the common intuition, the stochastic approach
of PiSTOL seems to have an advantage over the tuned SVM when the number of samples is small.
Probably, cross-validation is a poor approximation of the generalization performance in that regime,
while the small sample regime does not affect at all the analysis of PiSTOL. Note that in the case of
News20, a linear kernel is used over the vectors of size 1355192. The finite dimensional case is not
covered by our theorems, still we see that PiSTOL seems to converge at the same rate of SVM, just
with a worse constant. It is important to note that the total time the 5-folds cross-validation plus the
training with the selected parameter for the SVM on 58000 samples of SensIT Vehicle takes ∼ 6.5
hours, while our unoptimized Matlab implementation of PiSTOL less than 1 hour, ∼ 7 times faster.
The gains in speed are similar on the other two datasets.

We also tested the performance of a per-coordinate variant of PiSTOL, suitable for linear kernels in
finite dimensional spaces, implementing it in the Vowpal Wabbit (VW) software4. In this case, we
do not have the guarantees of the standard version of PiSTOL, but we can still prove a worst case
regret bound, see [10] for details. We compared it to the performance of VW, the de-facto standard
to train linear classifiers in industry. As shown in [7], per-coordinate online algorithms for convex
losses can be very easily designed and analyzed just running an independent copies of the algorithm
on each coordinate, each one with their own parameters αi,t, ai,t, bi,t. Also, for each coordinate i
we set ai,t = Lmaxj≤t |xi,j | and bi,t = 0.5

√
αi,t. This choice gives a scale-free algorithm, in the

sense that the predictor is independent of arbitrary scalings of the coordinates of the gradients of
the loss function, similar to the algorithms in [11, 13]. We used the logistic loss and did not tune
the parameters of VW, to evaluate the ability of the algorithms to self-tune theirs parameters. The
results are presented in Table 1. The training times of our implementation are the same of VW.

3Datasets available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
The precise details to replicate the experiments are in [10].

4https://github.com/JohnLangford/vowpal_wabbit/wiki
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