
Automatic Semantic Locking

Guy Golan-Gueta
Tel Aviv University
ggolan@tau.ac.il

G. Ramalingam
Microsoft Research

grama@microsoft.com

Mooly Sagiv
Tel Aviv University
msagiv@tau.ac.il

Eran Yahav
Technion

yahave@cs.technion.ac.il

Abstract
In this paper, we consider concurrent programs in which the
shared state consists of instances of linearizable ADTs (ab-
stract data types). We develop a novel automated approach to
concurrency control that addresses a common need: the need
to atomically execute a code fragment, which may contain
multiple ADT operations on multiple ADT instances.

In our approach, each ADT implements ADT-specific se-
mantic locking operations that serve to exploit the semantics
of ADT operations. We develop a synthesis algorithm that
automatically inserts calls to these locking operations in a
set of given code fragments (in a client program) to ensure
that these code fragments execute atomically without dead-
locks, and without rollbacks.

We have implemented the synthesis algorithm and sev-
eral general-purpose ADTs with semantic locking. We have
applied the synthesis algorithm to several Java programs that
use these ADTs. Our results show that our approach enables
efficient and scalable synchronization.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming
Keywords Compiler, Synchronization, Composition

1. The Problem
Atomic sections are a language construct that allow a pro-
grammer to declaratively specify that a given code fragment
must (appear to) execute atomically, leaving it to a compiler
and runtime to implement the necessary concurrency con-
trol. In this work we develop a methodology and automation
support for realizing a restricted form of atomic sections.

The example in Fig. 1, inspired by the code of the In-
truder benchmark (from [1]), illustrates the problem we ad-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPoPP ’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2656-8/14/02.
http://dx.doi.org/10.1145/2555243.2555281

atomic { set=map.get(id);
if(set==null) { set=new Set(); map.put(id, set); }
set.add(x);
if(flag) { queue.enqueue(set); map.remove(id); } }

Figure 1. Code that manipulates several linearizable ADTs.

dress in this paper. The shared state of this code fragment
consists of three ADTs: (i) a Map ADT (pointed by the vari-
able map); (ii) a Set ADT (pointed by the variable set);
(iii) and a Queue ADT (pointed by the variable queue). (All
program variables, such as flag, are thread-local.) Each of
these ADTs is linearizable, and thus each individual ADT
operation appears to execute atomically. However, in this
case, we wish the entire code fragment to execute atomi-
cally: the individual ADTs cannot provide this guarantee.

We consider a Java multi-threaded program (also referred
to as a client), which makes use of several linearizable ADT
libraries. We assume that the only mutable state shared by
multiple threads are instances of ADTs. We permit atomic
sections as a language construct: a block of code may be
marked as an atomic section. An execution of an atomic sec-
tion is called a transaction. Our goal is to ensure that transac-
tions appear to execute atomically and make progress (avoid-
ing deadlocks), while exploiting the semantic properties of
the ADT operations to achieve greater parallelism. We also
wish to avoid the use of any rollbacks.

2. Overview
Our approach decomposes the responsibility for the task into
two parts: one to be realized by the ADT implementations
and one to be realized by a compiler (on behalf of the client
code). We require each ADT implementation to provide a
set of semantic locking operations. We show how a com-
piler can, given these ADT locking operations, automatically
compile atomic sections in a given (client) program so as to
provide the desired guarantees.
ADTs with Semantic Locking A semantic locking operation
of an ADT is used by a client of the ADT to acquire permis-
sion to invoke a specific set of base operations on the ADT:
in this case, we say that the client has a lock on the corre-
sponding set of underlying ADT operations. It is the client
transaction’s responsibility to ensure that it has a lock on a

385



// Standard API
void add(int i);
void remove(int i);
boolean contains(int i);
int size();

// Synchronization API
void lockAll();
void lockAdd();
void lockValue(int i);
void unlockAll();

Figure 2. API of a Set with semantic locking.

base ADT operation before it invokes that operation. The
ADT has the responsibility to ensure that two transactions
are allowed to simultaneously hold locks on operations op1
and op2, respectively, only if op1 and op2 commute. Fig. 2
shows an example for an API of a Set ADT with seman-
tic locking. In this example, an invocation of "lockAdd()"
acquires locks on the add operations of the Set — hence,
after transaction t invokes "lockAdd()", t is allowed to in-
voke the method "void add(int i)". For any integer v,
an invocation of "lockValue(v)" acquires locks on all Set
operations that refer to value v (e.g., "lockValue(7)" ac-
quires locks on the operations: add(7), remove(7) and
contains(7)). The method "lockAll()" acquires locks
on all operations of the Set; and "unlockAll()" releases
all locks owned by the current transaction.

We have used a simple annotation language (adopted
from [4]) to specify the semantics of a locking operation
(namely, the set of base operations it corresponds to); these
annotations enable our compiler to take an ADT description
as a parameter (our compiler is not aware of any specific
ADT).
Automatic Atomicity We have developed a compiler for
atomic sections. Given a client program and a specifica-
tion of the semantic locking operations of the ADTs used
by the client, the compiler inserts invocations of semantic
locking operations into the atomic sections in the client pro-
gram to guarantee atomicity and deadlock-freedom of these
atomic sections. The synchronization generated by our com-
piler follows a semantics-aware two-phase locking proto-
col [3]. Fig. 3 shows the result of applying our compiler
to the atomic section of Fig. 1. The basic idea is to con-
sider every base ADT operation invocation (say “x.op()”)
in the transaction and insert a conditional call (“if (cond)
x.lockY()”) to a semantic locking operation before the
base operation. The condition is used to dynamically check
if the object has already been locked. A static analysis identi-
fies the set S of all base operations that may be performed on
the relevant object (x in the above example) in the future (by
the transaction), and a semantic locking operation (lockY()
in the above example) is chosen so that it obtains a lock on a
superset of S. (An optimizing phase is used to identify when
either the conditional check or the lock-acquisition is redun-
dant and eliminate them.)

This basic scheme is modified by determining an order in
which objects are locked (to avoid deadlocks) and by moving
the semantic locking operations earlier in the transaction
to respect the determined ordering. All locks are released
at the end of the transaction to ensure two-phase-locking.

atomic {
map.lockKey(id); set=map.get(id);
if(set==null) { set=new Set(); map.put(id, set); }
set.lockAdd(); set.add(x);
if(flag) { queue.lockAll();
queue.enqueue(set); queue.unlockAll(); map.remove(id); }

map.unlockAll(); set.unlockAll(); }

Figure 3. The atomic section of Fig. 1 with semantic locking
operations automatically inserted by our compiler.

0%

200%

400%

600%

1 2 4 8 16

Sp
e

ed
u

p
 

Number of available cores 

Our Approach Single Lock Two-Phase Locking

Figure 4. GossipRouter. Speedup over a single core.

A separate optimization phase it used to release locks on
objects earlier when it is possible to do so safely.
Pointers and Limitations Our compiler handles programs in
which pointers to ADTs are dynamically manipulated. For
some of these programs, our compiler is unable to ensure
deadlock-freedom by using only the semantic locking oper-
ations of the ADTs. These programs are handled using an
additional specialized coarse-grain synchronization. How-
ever, our experimental evaluation shows that our compiler
creates effective synchronization that benefits from semantic
locking even in a program (the GossipRouter [2]) in which
coarse-grained synchronization is used.

3. Performance Evaluation
We have applied our approach to 5 benchmarks. In 3 bench-
marks we evaluate the performance of modules that are im-
plemented using several general-purpose ADTs: a Graph
(from [4]) a ReferencesCounter (reference counting module
implemented using a Map and Counters) , and a specialized
Cache (from [4]). In 2 benchmarks we evaluate the perfor-
mance of Java applications: Intruder (from [1]) and Gos-
sipRouter (from [2]). The results show, for all benchmarks,
that the our approach provides efficient and scalable perfor-
mance. Fig. 4 shows the results for the GossipRouter appli-
cation (in the figure, our approach is compared to a single
lock and to a realization of the two-phase locking protocol).

References
[1] sites.google.com/site/deucestm/.

[2] http://www.jgroups.org.

[3] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[4] GOLAN-GUETA, G., RAMALINGAM, G., SAGIV, M., AND

YAHAV, E. Concurrent libraries with foresight. In PLDI
(2013).

386




