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ABSTRACT

In this paper we address the problem of estimating the index size
needed by web search engines to answer as many queries as pos-
sible by exploiting the marked difference between query and click
frequencies. We provide a possible formal definition for the notion
of essential web pages as those that cover a large fraction of distinct
queries — i.e., we look at the problem as a version of MAXCOVER.
Although in general MAXCOVER is approximable to within a fac-
tor of 1 — 1/e ~ 0.632 from the optimum, we provide a condition
under which the greedy algorithm does find the actual best cover (or
remains at a known bounded factor from it). The extra check for
optimality (or for bounding the ratio from the optimum) comes at a
negligible algorithmic cost. Moreover, in most practical instances
of this problem, the algorithm is able to provide solutions that are
provably optimal, or anyway very far from the worst case. We re-
late this observed phenomenon to some properties of the queries’
click graph. Our experimental results confirm that a small number
of web pages can respond to a large fraction of the queries (e.g.,
0.4% of the pages answers 20% of the queries). In addition, our
approach can be used in several related search applications.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Information Storage and
Retrieval; G.2.1 [Combinatorics]: Discrete Mathematics; G.1.6
[Optimization]: Numerical Analysis.
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1. INTRODUCTION

Scalability is one of the main issues for web search engines, par-
ticularly with respect to query load and index size. In this paper
we address the latter problem in a very general sense: it is obvious
that having to deal with a smaller index implies the need of less
resources and hence is less costly. Fortunately, query frequencies
and the frequency of clicks on web pages that answer those queries
follow very different power laws, and hence an index that contains
a small fraction of all available web pages may answer well, as
shown later, a large fraction of the query volume.

In fact, we can always view a search engine as logically com-
posed by two indices. A small (main) index built from the essential
web pages that answers the bulk of the queries, and another (sec-
ondary) larger index that is tailored to answer long tail queries (see
[3, Section 11.4.4]). Here we consider the problem of selecting the
web pages for the main index leaving the design of the secondary
index for future work.

Formally, we address the following essential web pages' prob-
lem. Given a set ) of n queries and a set of m web pages P, that
form a (bipartite) “relevance” graph (for some notion of relevance
of a web page to a query, typically derived from user clicks), find a
subset of pages S C P of size K that maximizes the coverage of
queries. We say that a query is covered if at least one of the pages
that are relevant to it is in S, though, in general, one might consider
different definitions of coverage as we will see later. In this work
we aim to maximize the number of distinct covered queries, though
it would also make sense to maximize their total volume.

We use the following definition of relevance: we restrict P to the
set of pages that users clicked on sufficiently enough (i.e., at least
a certain number of times) as a result of a search. That is, a page
is relevant for a query if the ranking algorithm of the web search
engine believes it is a relevant page and enough users agree. Our
choice gives a very strong notion of relevance.

Notice that to solve the problem outlined above, in some sense all
available pages need to be indexed. However, as this problem can
be solved off-line, we do not need to construct the index to obtain a
good estimation of the top ranked pages for every query. Moreover,
we discuss later that having the index allows to find solutions for
specific instances that are interesting in their own right.

The essential web pages problem can be seen as a MAX-
COVER [12] problem. Hence, it is in general NP-hard, although
it is approximable to within a factor of 1 — 1/e from the optimum
using a greedy approach [18]. In this paper, we show that, however,
in many practical instances of our problem, the greedy algorithm in
fact finds the optimal cover.

"We remark that our notion of “essential” has nothing to do with
that described in [17], as better explained in the “Related work”
section.



Indeed, we observe that the value of the optimal solution of
MAXCOVER can be sandwiched from below by the greedy solu-
tion and from above by its relaxed LP formulation. It is known that
the ratio of the two sides of the sandwich is always lower bounded
by 1—1/e. The gap is tight in some cases, in the sense that one can
build instances that are as close as one wants to the above bound.
By taking the dual of the relaxed MAXCOVER LP, one obtains a
linear minimization program whose feasible solutions’ values are
upper bounds to the integral MAXCOVER problem. Therefore, the
dual problem can be used to provide bounds on the approximation
that the greedy algorithm produces: this is explained in Section 5.
The computational cost of producing this bound is negligible, and
the bound obtained is in many cases enough to prove that the greedy
output is actually optimal, or very close to optimality. In the exper-
iments on our largest dataset, for example, the bound produced was
never worse than 98%; a simpler baseline depending on cardinality
sum would yield much worse bounds (ranging from 87% to 93%).
In fact, even our bound is too pessimistic: the real approximation
ratio of the greedy algorithm for the datasets on which the exact
ratio could be produced was never worse than 99.79%!

More generally, it is striking to observe that our modified greedy
algorithm on the instances of our problem (Section 7) guarantees an
approximation that is (provably) extremely good, less than 2.5%
away from the optimum when K < 500 (and less than 5% for
K < 140,000). One might suspect that this extremely good ap-
proximation is due to the power-law distributions involved in our
instances. However, we prove in Sections 3 and 4 thatthe 1 — 1 /e
bound may still hold for these instances.

A hint to the real explanation of the observed phenomenon is
given in Section 6, where we prove that the greedy algorithm pro-
duces with high probability an almost optimal solution provided
that the following three conditions are satisfied:

1. the greedy algorithm is able to include at least Q(logn)
queries at every step;

2. there are many queries only included in constantly many web
pages; and

3. the instance is chosen uniformly at random, between those
satisfying the given distributions.

Note that condition (2) is guaranteed if the queries’ clicks follow a
power-law distribution, as it happens in practice.

Our final coverage results are quite good. In fact, in our largest
dataset, almost 25% of the queries are covered by just 0.7% of the
web pages (Section 7). In the Conclusions we discuss our results
and give other search related problems that can profit from this
powerful imbalance.

2. RELATED WORK

Many recent papers focus their attention on various possible
search scenarios that can lead to (variants of the) MAXCOVER
problem, and analyze the issues they imply. Examples of appli-
cations include influence maximization in social networks [6, 14],
whereas in the context of web search it was recently used to for-
malize the problem of discoverability of new content [11]. In the
latter paper, they overcome the inherent difficulty of the problem
using past observations. All the cited scenarios deal with very large
datasets, which raises the question of whether the greedy algorithm
is amenable to being implemented in a MapReduce framework [7].
One interesting aspect of the algorithm we are presenting in this
paper is that we can modify also the MapReduce-greedy algorithm
given in [7] to obtain a behavior similar to the one that we describe

here for the sequential case, at the expense of a reasonable increase
in the number of the MapReduce iterations required.

Another stream of related research are the so-called pruned in-
dices. Pruned indices are smaller indices where term and/or docu-
ment related information is deleted to use less space. The most re-
cent results show that caching is more effective than index pruning
to improve answering time [16]. Nevertheless, the initial motiva-
tion of index pruning was to use less space [5], but the techniques
used did not force that all references to a given document would
need to disappear from the index.

A notion of “essential” page was introduced in a quite different
context in [17], but with another meaning: they are not interested
in covering queries but rather knowledge (terms), and they express
this need as a form of coverage problem. Their problem is differ-
ent from the vanilla (i.e., unweighted) MAXCOVER problem. They
do use a greedy approach to solve it, but do not provide bounds
on the quality of the solution obtained. In fact, a recent paper [9],
considers a general problem that includes both MAXCOVER, and
the problem in [17], as special cases. The authors of [9] provide
an algorithm that returns a 1 — 1/e + ¢ approximation in time
O(poly(n) - m*/ P°W()): they also provide a variant of greedy for
the same problem, but with larger approximation ratios.

3. MAX COVER

MAXCOVER is a well-known NP-hard problem [12] that con-
sists in finding K sets in a given collection so as to maximize their
union.

In our intended application items are queries, sets correspond to
URLs,” and a query belongs to the set of a given URL if that URL
is deemed “relevant” for the query. The actual definition of what
relevant means is not really important here: in the experimental
part of this paper (Section 7) we used a number of query logs of a
search engine and extracted the click graph [10], to determine on
which URLSs people clicked after submitting a query. Other possi-
ble variants on the exact definition of the problem will be discussed
at the end of the paper.

Formally, the MAXCOVER problem can be stated as follows:
Problem 1: MAXCOVER.

Input: An instance IT = (2, S, K) is defined by a set © of n
items, a family S = {51, ..., Sm } of m subsets of 2 and an inte-
ger K.

Output: Find a subset S’ C S with |§’| < K maximizing

Us

Ses’

OorpT(II) =

From time to time, we shall look at the pair (€2, S) as a bipar-
tite graph, with n vertices on the left-hand side (hereafter called g-
vertices, where “q” stands for “queries”, because items are queries)
representing the items 2 (queries), and m vertices on the right-
hand side (hereafter called d-vertices, where “d” stands for “docu-
ments”) representing the sets S (web pages); edges represent mem-
bership of items to sets, as expressed by the notion of “relevance”
adopted.

The degree sequence of g-vertices (i.e., the list of their degrees
sorted in non-decreasing order) will be called g-sequence (“q”
stands for “query degree”), and similarity the degree sequence of d-
vertices will be called d-sequence (for “document degree”). Since
we observed (Section 7) that both sequences are power-law of ex-
ponents larger than 2, we are especially interested in dealing with
this case.

“We use URL (or document) as a synonym of web page.



The MAXCOVER problem can be formulated [18] as an integral
linear programming problem with n 4+ m variables and 2n + 1
constraints as follows: take one variable x; (with 1 < ¢ < n) for
every item and one variable y; (with 1 < j < m) for every set,
where all variables are constrained to be non-negative (ideally, in
{0,1}) and z; = 1 means that the i-th item is covered, whereas
y; = 1 means that the j-th set is output.

With this notation, we can formulate MAXCOVER as:

max (Z xz> subject to
i=1
m
Zyj <K
j=1

mi—Zng() fori=1,...,n
SFED

xi,y; €[0,1] fori=1,...,nandj=1,...,m.

ey
This LP model will be referred to as MCLP (for “MaxCover LP”) if
x; and y; are constrained to be integral. The first constraint simply
means that we want to take at most K sets, the second 4 constraints
impose that we can say that x; is covered only if at least one of
the sets containing it is taken, whereas the final set of constraints
impose that x; is zero or one.

If we relax the constraint that z; and y; be integral, we obtain a
new LP model that we refer to as relaxed MCLP: an interpretation
of this relaxed version is that a set can be “partially taken” (when
y; is strictly between 0 and 1), and hence an item can be “partially
covered”.

Integrality gap (general case).

We shall use LP(II) to denote the value of the objective for
the relaxed MCLP corresponding to the instance II. Of course
OpT(IT) < LP(II). Actually the ratio between the two (called
the “integrality gap”) satisfies

The lower bound is tight, in the sense that for every € > 0 there is
an instance whose integrality gap is less than 1 — é + €. This is ob-
tained with a classical [18] construction that we shall now describe,
since we shall modify it later on.

We shall build an instance 11y, for every integer M > 2; the
instance TIps has M? sets S = {S1,...,Sy2} and Q is made
of (%\I;) items: for every choice of M sets out of the M? available
there is one item that is put in exactly those sets. If you fix K = M,
the optimal solution to MAXCOVER will have value

ovr(ila) (AA/[;> - <M2A; M>’

because whichever class of K = M sets you choose, all the items
that were put in a disjoint class of M sets not overlapping them
will not be covered. On the other hand, the optimal solution of the
primal (1) for this instance is

LP(ITa) = (Yj)

The2 fact that (AA{;) is an upper bound follows trivially from |Q| =
(7). We give a feasible solution of (1) that achieves that value,

thus proving our assertion. We set y; = M~ for each set S;. By

definition, each item ¢ is contained in exactly M sets, and we can
therefore choose x; = 1 without violating any constraint.
The integrality gap OPT(II,s)/LP(I1,s) is bounded as follows:?

orr(iy) _ (™)
L)~ )

(M?*—M)---(M?—2M +1)
M2 (M2 — M +1)

2 M M
o (MEoaNT L
M2 - M M—-1
1 1
<1l-—- — ).
<1 e+0<M>

Integrality gap (power-law case).

We want to show that the above construction can be modified
so to prove that the lower bound is tight also for instances whose
d-sequence is a power law distribution of exponent o > 2.

Let us use II/ to denote the instance described above. Observe
that, by Stirling’s approximation, the number of items (1\]5) in the

. . _1 .
instance I1,; is © (M M=—3eM ) . Moreover, each set has cardinal-
. 2_ _3

ity (%711) =0 (MM 2 eM).

Now suppose that we aim to create an instance II' with a
d-distribution (that is, a set-cardinality distribution) following a
power law with some constant exponent o > 2. Let ((o) =
> oo, i, For every integer M, the number of sets with cardi-

M2-1
M-1

=1-

nality ( ) needs to be at least

t
M2_1\ ¥
C(a) : ( M—1 )
where ¢ is the number of sets in IT".
For any given ¢, if we choose M to be an integer such that ¢ =

3 . .
© (MM""E"‘”eMa) we are sure that in the instance I1’ that we

-0(1)>9Q (t . M%anae—Ma) ’

2
construct, there will be at least M? sets of cardinality ("), ')

Let us use S to denote an arbitrary class of M? sets of cardinality
2
() in "

Now, the largest set in IT" will have cardinality at most O(ti ).
We let all sets in II’ — S be subset of the largest set in IT'. Then, the
total contribution of the sets not in S to a solution (whether integral
or fractional) is at most

1o (t%) -0 (MM—%+%6M) .

As we already showed, if we choose K = M, then the solution
composed of the sets in S has value ©(n) = © (MM’ 3 eM). We

1
have that © (%‘) =0 (M_H'%). Since o > 2, the latter is

o(1). Therefore, the integrality gap of II' can be upper bounded by
the integrality gap of ITas times at most 1 4+ o(1) — that is, it can
be upper bounded by 1 — 2 + o(1).

*We are using the fact that 1 < a < b implies ¢ > %=1

b—1°
M2—_M—i > M?—2M
M2 MZ—M *

SO




4. THE DUAL PROBLEM AND ITS RELA-
TION WITH THE GREEDY SOLUTION

In this section, we present a classical heuristic for MAXCOVER
and discuss how good is the approximation ratio it provides. For
this purpose, it is useful to see it in relation with the dual LP prob-
lem.

The dual of (1) is a new LP with 2n + 1 variables T, z;, w;, and
uj (with1l <¢ <mand1 < j < m)and n + m constraints:

min (K T+ Z zl> subject to

i=1

zi+w; >1 fort=1,...,n,

@
T— > wi>0 forj=1,...,m,
z; €S
zi,w; >0 fori=1,... n.

Now, let us take an optimal solution of (2) and modify it as fol-
lows.

1. Observe that optimality guarantees that z; < 1 for each ¢ =
1,...,n. Indeed, if z; > 1, by assigning the value 1 to z;,
we decrease the value of the objective, and we keep every
constraint satisfied.

2. For every index i, if z; + w; > 1, we assign to w; the new
value w], = max(0,1 — z;). We show that this substitution
keeps intact the feasibility of the system. Observe that w; >
1 — 2z > max(l — 2;,0) = wj, so w; < w;, and the
substitution never breaks constraints from the second group;
moreover, z; + w; = max(1l,z;) > 1, so the constraints
from the first group will also be satisfied, and the solution
will still be feasible.

In other words, under optimality we can assume that w; = 1—2z; €
[0, 1], so the optimal solutions of (2) can be turned into optimal
solutions of a simpler LP problem with n 4 1 variables only:

min (K -T 4+ Z z1> subject to
i=1
T >S5 — Z z; forj=1,...,m,
z; €S
z; €[0,1] fori=1,...,n.
3)
The optimal value of (3) on a given instance II of the problem
will be denoted by DLP(II); by the duality theorem

DLP(II) > LP(IT) > OpT(II).

In other words, solving either LP problems (either the primal or the
dual) provides an upper bound to the value of the optimal solution,
and as proved in Section 3 the gap between the optimum and the
upper bound can be as large as 1 — 1/e.

Sub-optimality of greedy algorithm (general case).

The greedy solution of the MAXCOVER problem is found by se-
lecting iteratively the set (one of the sets) that cover the maximum
number of yet-uncovered items, until K sets are selected. We write
GREEDY (II) for the number of items covered by the greedy solu-
tion on the instance II.

Greedy solutions are sub-optimal, that is (looking at the overall
picture) DLP(II) > LP(II) > Opt(II) > GREEDY(II) but it is

known that [13]

GREEDY(II) <1,

orr(Il) —
with the lower bound being once more tight (i.e., there are instances
for which we can make the ratio as close to the lower bound as we
want).

We now describe a classical construction that shows the tightness
of the lower bound. Fix K > 2, and choose an integer ¢ > 1. We
create an instance I = II(K,t). Foreachi = 1,...,K and j =
0,...,Kt—1,letus create a set QZ containing KXt~1. (%)]
unique elements. Let Q2 =, ; QL0 = U; QJand Q7 = J, Q.

We let the sets of the instance be ;, fori = 1,..., K, and 7,
for j =0,..., Kt — 1. Observe that picking the sets Q1,...,Qx
is an optimal solution, having value:

K Kol /e 4\
. | g oK1 -
o= I = KK > (52

Jj=0

1 Kt
=KX (1 - <1 - ?) ) > (1—e ) KN

On the other hand, each €7 is larger in cardinality than any €2,
so the greedy algorithm will pick the sets QY. ..., Q%=1 in this
order, for a total value:

1t
€

<

)QOU UQKA’:K.Kthl.Kzi:l K—1\’
2 e

(4

Therefore, the ratio between the value of the solutions produced
by the greedy algorithm and the optimal solution is bounded by

1-(1-5)"
1—e?

GREEDY (II)
OpT(II)
By selecting t = t(K) = [In K|, we obtain that the ratio can
be upper bounded by 1 — £ + O (4 ). Hence, the ratio converges
tol — é as K — oo.

Sub-optimality of greedy algorithm (power-law case).
We once again transform the above instance II (K, [In K) into

an instance having a power law d-distribution (i.e., cardinality dis-

tribution) with exponent o« > 1. We will build the new instance

IT' so that it contains m = © (K‘“K““ KHl) sets. An easy cal-

culation shows that it will contain at least K sets of cardinality
|Q1] = Q2] = ... = |Qxk|, and at least 1 set for each of the car-

dinalities }QO‘ , ’Ql| ey ‘QK““ K1-1 ’ We will use these sets to

recreate the instance II within IT'.

The largest set in I will have size © (KK““ Kl+g

), and we
build all the other sets of II” so that they are subsets of this largest
set.

Now, picking the sets 21,...,Qx will still cover at least
(1— L) KKK elements. The greedy algorithm, on the
other hand, will cover the set of maximum size — which will ac-

1 N .
count for © (KK““ KHE) elements — and, as in the instance

I1, will necessarily cover at most KM KT+, (1 - (1 - %)K)

other elements.
Therefore, GREEDY (II') /OPT(IT') — 1 — 1, as K — oo.



Sub-opt. of greedy algorithm (double power-law).

The previous proof still leaves some margin of hope: the tight-
ness of the bound may fail to hold if we require both distributions
to be power-law. A more complex construction, however, shows
that even in this case the usual bound holds true (see the Appendix
for the full proof):

Lemma 1 Suppose that « > 2 and 8 > a+1. Then, we can create
instances I’ of increasing sizes n = ©(m), having a q-degree -
power law distribution, and a d-degree (3-power law distribution,
such that

GREEDY(II') nooo L 1
OorT(Il") e’

The instance showing the above bound is created by “embed-
ding” the classical construction described in the previous subsec-
tion into an instance with degrees and cardinalities distributed like
power laws. This has to be done in a very careful way: first we
show that the largest sets in the power law instance are good enough
to contain the elements in the largest sets of the classical instance.
Then, we need to ensure that the other large sets in the power law
instance will not change by more than a (1 + o(1)) factor from the
value of the greedy, and optimal, solutions. To do so, we include
all those sets in one large set — this, of course, changes the degree
distribution: the last part of our proof is then showing that the dis-
tribution does not change significantly and, in fact, still follows the
same power law.

5. BOUNDING THE APPROXIMATION OF
THE GREEDY SOLUTION

The previous section does not leave much room for hope: appar-
ently even having an instance of MAXCOVER that has a power-law
distribution of degrees on both sides may cause greedy to work as
badly as it can. Also, on the other hand, the LP formulations do not
help much, because they are themselves away from the optimum
(in the other direction) for a large gap.

Nevertheless, we will be able to prove that greedy can exploit the
dual problem to “certify” the quality of its own output, that is, to
provide a bound on how far the solution is from the optimum. This
property will allow us to modify the greedy algorithm so to make it
produce this certificate along with the solution at a moderate com-
putational cost (in many cases, asymptotically at no cost).

The basic property is stated in the following theorem; albeit
seemingly unfathomable, we shall see how this result can be put
at good use in a self-certifying version of the standard greedy algo-
rithm.

Theorem 1 For an integer t > 1, we say that a set is t-large if
its cardinality is at least t, and that an item is t-certifying if it is
contained in at most one t-large set.

Consider an instance 11 and let SY, . .., S§ be a solution (that is,
a sequence of sets) produced by greedy; define

v =

K-—1
s\ U s
j=1

that is, the “gain” produced by the last set. Forallj =1,..., K —
1, let ¢; > O be the smallest integer such that the number of -
certifying items contained in S is at least v — £;. Then,

K—-1
DLP(II) < GREEDY(II) + Z 4;

and therefore ST, ..., S% is a solution of MAXCOVER with an
additive error of at most Z;{;ll 4;.

PROOF. Observe that, necessarily, for each j = 1,..., K, we
have |S7| > v — that is, all the S} ’s are y-large. Therefore, if x is
a ~y-certifying item, then x can be in at most one set S7, 1 < j <
K.

Now, foreach j = 1,..., K — 1, let T} be equal to any subset
of S7, of cardinality v — EJ, containing only ~y-certifying items
(observe that 7' is well-defined because of the assumption in the
claim). By deﬁnition, the T;’s are pairwise disjoint.

Consider the dual (2) and let

. K-1 * *
Y {1 ifx; € szl (Sj \Tj)

0 otherwise.

Since TF C S and since the T'"’s are pairwise disjoint, we can
j =95 J
write

n
E Z; =
i=1

U srm)-

U

The value of the objective function of the dual is then
(UK LSl -y (K- 1)+ KT+ XK,

By the definition of ~y, we have ‘UK ! S

_ ‘UK szl

Therefore, the value of the objective function of the dual is

K
Us;
j=1

We prove that setting ' = -~ gives a feasible solution for the
dual, i.e., we show that it satisfies every constraint in the dual pro-
gram: vy =T > [S|=3" g 2iforeachset S € S of the instance.
We rewrite the constraint:

+K(T=9)+> 4.

? K—-1
v 215 - ‘Sﬁ U 55\ 77)

If $ = S, forsome j = 1,...,K — 1, then the constraint

”
is trivially satisfied, since it simplifies to y > |T7| = v —¢;.
We therefore assume that S differs from each of the ST, ..., Sk _1
sets. Moreover, we can assume that |S| > -, because otherwise
once more the constraint will be trivially true.

Observe that Uf:_llTj* has empty intersection with S — indeed
each node in the former set is part of exactly one ~y-large set be-
tween ST, ..., Sk _; and cannot therefore be part of a second -
large set S. Thus, the constraint can be rewritten as:

K—1 K—1
snlysii=1s-Us;
j=1 j=1

The latter cannot be larger than -, otherwise the greedy algorithm
would have picked S instead of Sj # S.

Hence, we found a feasible solution of the dual whose objective
is ‘UJ 1 S*’ + ZK ' ¢;. Since the solution of value ‘U;il S;

produced by the greedy algorithm is feasible in the primal, we ob-
tain

?
v > [S] -

K—

Z > DLP(I). O

GREEDY (IT)

K—-1
+ > 4=
j=1

K
Us;
j=1




A special case of Theorem 1 can in fact provide a guarantee of
optimality: if forall j = 1, ..., K — 1, the number of y-certifying
items contained in S} is at least -y, then all £;’s are zero, and the
solution produced by the greedy algorithm is optimal.

We can turn the additive bound of Theorem 1 into a multiplica-
tive bound (or, if you prefer, into a bound on the approximation
ratio):

Corollary 1 If11 satisfies the hypothesis of Theorem 1 then

1 GREEDY(II)
SE-y, Op1(IT) =1
K1y,
1+ GRéEDY(H)

PROOF. Just recall that GREEDY (1) +Z§<:711 ¢; > DLP(II) and
the latter is an upper bound for OpT(II). O

Note that the actual ratio can be much better than the one ob-
tained by Corollary 1 simply because the upper bound of Theo-
rem 1 is not tight. If the instance is small enough, one can try to
solve the dual LP to obtain a better bound (or even to show that
greedy produces the optimum for the instance under test).

The claim of Theorem 1 could be seen as being too unwieldy
to be useful. In the following, we will show that (i) the theorem
can be directly turned into an efficient algorithm, and that (ii) the
approximation ratio that Corollary 1 guarantees for this algorithm
is, on our instances, very close to 1.

A certifying greedy algorithm.

Theorem 1 can be turned into an algorithm that is able to certify
that the solution currently produced by the greedy algorithm sat-
isfies the theorem and it is optimal, or more generally to provide
a bound on its approximation ratio. This extra computation has a
moderate extra cost in time, and only requires a O(T log T') pre-
processing phase (and linear extra space), where T is the size of
the instance.

Given a pair (2, S), for every item = € (2 define &, to be 1
plus the cardinality of the 2nd largest set S; € S containing x; of
course, for every ¢, z is t-certifying if and only if £, < ¢. Now, let
us store, for every S; € S, an array x5, [—] of |.S;| entries, where
zs;[1] < -+ < wg,[|S;|] contain the values &, (for all z € S;) in
non-decreasing order.

By the observation above, for every ¢, .S; contains at least ¢ items
that are ¢t-certifying iff zs, [t] < t. More generally, for every ¢, let u
be the largest index such that zg, [u] < ¢ and let £ = max(t—wu, 0).
Then, £ is the smallest non-negative integer such that S; contains at
least t —/ items that are ¢-certifying (because t —¢ = t —t+u = u).
Index u can be found by binary search.

Armed with these observations, we can present Algorithm 1: it
is a variant of the standard greedy algorithm, but at every step it
provides a lower bound to the ratio between the greedy solution
and the optimal one. The time required to produce the lower bound
is O(K logn), where K is the size of the current solution. Since
K < m, the cost per iteration is asymptotically log n larger than
O(m), the time required by the standard iteration of the greedy
algorithm.* In particular, as long as K < m/ log n, Algorithm 1 is
(asymptotically) not worse than the standard greedy algorithm.

*If only a test for optimality is needed, it can be done in time
O(K), by just checking at every step that zg,[y] < ~ for every
i =1,...,K — 1, avoiding the binary search.

Algorithm 1 Certifying the greedy algorithm with the lower bound
produced by Corollary 1. Here, c represents the number of items
covered by the current solution ST, . .., Sk, 7y is the gain of the last
set, and L is the sum Zf;ll £; using the notation of Theorem 1.

Input: apair (2,8 = {S1,...,5m})

K<+ 1;¢+0

while true do
choose ¢ € {1,..., m} maximizing v = |S; \ uf;lls;\
/I check that all sets contain > ~ items that are y-certifying
L+ 0

for j from 1 to K — 1 do
find the largest w such that Ts: [u] <+
L + L+ max(0,v — u)
Sk + S;
cc+vy
Solution SY, ..., Sk is not worse than a 1+1 - approximation

K+ K+1

6. CARDINALITY AND DEGREE-BOUND
RANDOM INSTANCES

In this section we introduce a natural model to produce random
instances, and we show that the greedy algorithm is going to be
close to optimal on them, and that our certifying greedy algorithm
will be able to certify this near-optimality.

Definition 1 Let 1 < g1 < ... < qgp <mandd; < ... <dm <
n be two non-decreasing sequences such that

ZQi = Zdj = M,
i=1 =1

and such that q,, - d, < M. We build a bipartite graph with n+m
nodes, and for each' 1 < i < nand1 < 57 < m, we add an
edge between the nodes corresponding to q; and d; independently
with probability qi]jj . We denote this random bipartite graph by
B(q, d) (here g; correspond to queries and d; to documents).

We interpret this bipartite graph B(q, d) as a set system: an item
g will be part of the set .S iff ¢ has an edge to S. We observe that
the expected degree’ of the node corresponding to g; (resp., d;) is
in fact g; (resp., d;).

We will consider power law distributed g and d, so to match
what we see in our datasets. We assume that q follows a power law
with exponent o > 2, and that d follows a power law with exponent
[ > 2. That is, we assume that the number of items with a value
qi equal to g will be © (M . q_o‘), and the number of sets with
a value d; equal to d will be © (M -d~?). A simple calculation
shows that o, 5 > 2 imply that the condition g, - d,, < M is
satisfied.

We also point out that the power law distributions imply that the
tails of g and d satisty, for every integer t > 1:

S g2 (M-t*7), and Zdjz@(M.ﬁ*B).

i J
qi>t dj>t

>This random construction does not guarantee that the degree se-
quences are exactly given by the ¢;’s and d;’s: this will be true
only in expectation. On the other hand, there is a trivial (albeit
cumbersome) proof that the degree distributions of the two sides
will follow the original power laws.
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Figure 1: Bound output by Algorithm 1 for K = 1,...,500 on
the largest of our datasets.

Lemma 2 Let 11 be the instance corresponding to a sample of
B(q,d), with d and d following, respectively, a power law with
exponent « > 2, and one with exponent 3 > 2.

If Algorithm 1 is run on 11 then, with high probability, for each K
for which S produces a gain of at least 218 new elements, then
the algorithm returns, and certifies, a (1 — O(g))-approximation
for MAXCOVER.

Once again the proof of this Lemma is omitted here (and given
in the Appendix). The interpretation of this result is essentially the
following: under the conditions stated in the Lemma, the greedy
algorithm will provide a very good approximation as long as suffi-
ciently many items are brought in at every step — that is, as long
as 7 = Q(Inn). One of the key properties used in the proof is
that, under the conditions in the lemma, every “large” set S' con-
tains many items that, excluding S, are only part of “small” sets —
these elements will then be y-certifying.

A fair point to make is that our instances are not “random”.
Nonetheless, we think that this result highlights some simple prop-
erties (which are sufficient for Theorem 1 to certify a good approx-
imation) that are shared by real instances and random ones. This
result is intended as a partial explanation of the surprisingly high
quality of the greedy approximation.

7. EXPERIMENTAL RESULTS

Description of the datasets.

For our experiments, we started from four samples taken from
the query logs of the Yahoo! search engine, covering different time
periods, from few hours to many months. For each of the four
query logs, we considered all (query,URL) pairs that corresponded
to a click (the so-called click graph [10]). In order to reduce at the
same time the size of the dataset and the level of noise, we per-
formed the following cleaning operations: (i) we did not consider
queries submitted less than ¢ times, with ¢ € {5,10,20}; (ii) we
did not consider (query,URL) pairs appearing less than f times,
with f € {5,10,20}; (iii) of the remaining pairs, for each query
we only considered the (at most) top k£ URLs that were clicked most
frequently for that query, with k& € {10, 50, 100, 1000}.

As aresult, we worked on 144 graphs, with a number of queries
ranging from 10, 935 to 8, 730, 941, and a number of URLs rang-
ing from 15,393 to 19, 990, 574. The graphs were produced using
Hadoop (from the distributed HFS containing the query logs) and
were then compressed using WebGraph [4]: the largest of them (the
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Figure 2: In blue, the bound output by Algorithm 1 for K =
1,...,500 on the largest of our datasets; in red, the trivial
bound.

one relative to a whole semester, with ¢ = f = 5 and £ = 1000)
was 814 MB.

Degree distributions.

For each dataset, we computed the ¢- and d-distributions; recall
that the d-distribution is the distribution on the sizes of the sets
(i.e., of the number of queries related to a specific clicked URL),
whereas the g-distribution is the distribution of the number of sets
in which an item appears (i.e., of the number of URLs that were
clicked for a specific query): because of the way data were filtered,
the g-distribution is capped by k (no query will ever appear in more
than k sets), whereas there is no upper bound on the largest possible
value appearing in the d-distribution.

For every degree distribution, we used the techniques of [8] (as
implemented in the p1fit tool) to fit them to a power-law and to
estimate the corresponding exponent: the resulting exponents for
the two distributions are reported in Table 1.

min | Istq. | median | mean | 3rdq. max
g-degrees | 1.991 | 2.090 2.124 | 2.141 | 2.180 | 2.398
d-degrees | 2.571 | 2.837 2.892 | 2.937 | 2.982 | 3.258

Table 1: Exponents of the power-law distributions for the two
sides of the bipartite graphs corresponding to our datasets.

Running algorithm 1.

We ran the first 500 iterations of the certifying greedy algorithm
(with K = 1,...,500) on each dataset, keeping track of the solu-
tion found and of the bound on its optimality, as produced by the
algorithm. The running time was about 29 ms per iteration on an
Intel Xeon CPU X5660 at 2.80GHz: this datum is averaged across
1000 iterations and includes the pre-processing time.

The overall behavior observed is the same across all the datasets,
and it is drawn in Figure 1 for our largest dataset; the bound with
K = 500 is still 0.9853, which means < 2% with respect to the
optimum.

Independently on the choice of the parameters (¢, f and k), the
bound on the error for the largest dataset was never larger than 2%
forall K = 1,...,500. It is generally observed that increasing c
and f or decreasing k leads to larger error bounds, simply because
it makes the sets smaller: this is true across all datasets.

We compared our bound on the approximation ratio with a base-
line (the ratio between the number of items covered by the greedy
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Figure 3: Plot in loglog-scale of the g-distribution (left) and d-distribution (right) of one of our largest datasets, and the corresponding
power-law curve (with the exponent obtained by p1£it). Note that in this example £ = 1 000, which caps the ¢-degrees (because a

query cannot appear in more than 1 000 web pages).

solution and the sum of the cardinalities of the sets selected). The
baseline bound on the largest dataset would produce much less pre-
cise values (between 0.883 and 0.933): the comparison is shown
in Figure 2.

The tightness of our bound.

The bound produced by the algorithm seems to witness that the
greedy algorithm behaves much better than expected, especially on
large datasets, which is the case for web search; in fact, the real
approximation ratio may be even better than that!

We have tested this hypothesis by explicitly solving the linear
program (using the IBM cp1ex optimizer®) on (each of) the small-
est datasets for K = 1,...,500. We could not run it on larger
datasets for performance-related reasons (solving the LP would
have taken too much time, and too much memory).

We were surprised to observe that, in each of these test cases,
the LP value was at most 8 additive units more than the value of
the solution produced by greedy; moreover, in each test case, the
approximation ratio was at least 99.79%. In many cases the two
values did coincide, showing that greedy was in fact producing the
best solution. We find this observation extremely appealing. We
are still lacking a completely satisfying explanation of this phe-
nomenon — we see Theorem 1 and Section 6 as just a first step in
this direction.

Rewiring the datasets.

Since we are interested in the way the degree distributions influ-
ence the behavior of our algorithm, for each of the 144 datasets we
produced two rewired variants: (i) g-scrambling (the web page car-
dinalities were kept unchanged, but the queries contained in each
web page were chosen uv.a.r.); (ii) d-scrambling (the numbers of
web pages where each query appears were kept unchanged, but the
actual web pages to which each query belongs were chosen u.a.r.).
In other words, the two variants are designed so that one of the
two degree distributions matches the one summarized in Table 1
whereas the other becomes uniform.

We then ran Algorithm 1 on the scrambled datasets; the outcome
was more or less the same for all cases: (i) On the g-scrambled
datasets (same cardinalities but items chosen u.a.r.), the bound pro-

6http://www—Ol.ibm.com/software/commerce/
optimization/cplex—-optimizer/

duced by the algorithm is extremely good for all K = 1,...,500:
essentially the greedy algorithm produces the optimal solution in
all cases. Intuitively, the g-scrambled dataset resembles the best
possible world: the largest sets are disjoint with high probability,
and choosing the K largest ones provides a solution that is very
close to the optimum. (ii) On the d-scrambled datasets (items have
the same degrees but are assigned to sets u.a.r.), greedy performs
much worse than in the original datasets. An intuitive reason is that
sets are much smaller than in the original case, and therefore it is
much harder for Algorithm 1 to find certifying elements.

Ratio of coverage.

One important aspect that we have not yet discussed is how many
queries of the universe we are, in fact, covering. We observe that
the number of queries covered at K = 500 is negligible (only 2.5%
on our largest dataset). In Figure 4, we present Algorithm 1’s re-
sults on our largest dataset for K up to 140, 000.

Recall that Algorithm 1 serves two complementary needs. First,
it tries to select K web pages to maximize the number of queries
covered. Second, it gives an upper bound on the maximum number
of queries that can be covered with K web pages. Figure 4 shows
the algorithm performance in these two tasks: the blue line repre-
sents the fraction of queries that Algorithm 1 could cover with a
given K, while the red line represents the aforementioned upper
bound.

For concreteness we mention that, for our largest dataset, 24.5%
of the query universe can be covered with just less of 140,000 URLs
(0.7% of the URLSs!), and that it is impossible to cover the same per-
centage with fewer than 123,000 URLs. We also observe that the
MAXCOVER approximation that Algorithm 1 can certify is quite
good even at K =~ 140,000. At such a large K, the algorithm
certifies an approximation of 0.95; the trivial sum-bound certifi-
cate at the same K would not be better than 0.74. In fact, up to
K = 360,000 (1.8%) we can ensure that the solution is almost
optimal.

If we fit a power law to the increments of unique queries covered
by Algorithm 1 in Figure 4, we obtain an exponent of -0.76. This is
not surprising, because usually the interaction of power laws gives
another power law. In fact, this exponent is very close to the differ-
ence in the power law exponents of the ¢- and d-sequences. Hence,
we fitted a model of the form o - z%-* — 3 to the coverage curve
obtaining an error of just 5.7 - 107> for o = 1.148 and § = 0.098
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Figure 4: The fraction of queries (blue) covered by Algorithm 1
with respect to the fraction of web pages on the largest of our
datasets; for comparison, we show the upper bound on the
fraction (red) produced by Theorem 1 as well as the sublinear
model (dashed).

(see dashed line in Figure 4). Notice that for x = 1 we obtain a
coverage of 1.05! (a perfect model should have coverage 1). From
this model we can estimate a coverage of 50% of the queries with
just 6.6% of the URLs and a coverage of 87% when using 50%
of the web pages (these estimations are pessimistic as the model
grows slower than the real curve).

8. CONCLUSIONS AND FUTURE WORK

We have shown that we can find an almost optimal small set
of web pages that can cover a large subset of all possible unique
queries. We plan to extend our results to the weighted version,
that is, to maximize the coverage of the query volume. We believe
that maximizing this case might be a harder task than our original
one. However, the coverage results will be better. We expect the
coverage to be at least 50% of the query volume with 5% of the
web pages, because most important URLs are good answers for a
large fraction of the query volume (e.g., see [2]). We also plan to
change the definition of relevance (e.g., use all top answers and not
only the clicked pages or weight the clicked pages by the dwell
time to control for novelty and spam) and of coverage (e.g., a query
is covered only if the index contains at least ¢ relevant pages).

Our result partly depend on a double power-law, one for queries
and another for web pages. The power law of web pages do depend
on the ranking function of the search engine. However, apart from
simple ranking schemes such as PageRank that can be shown to be
a power law, there is little on the study of score distributions for
ranking functions (e.g., see [15]). Nevertheless, in practice rank-
ing score distributions should follow a power law, as it happens in
typical features used for ranking functions, such as terms or clicks
frequencies. Although in practice web indices contain hundreds of
billions of pages, our findings show that our approach is invariant
to scale (the results are similar from thousands to tens of millions),
as expected given the power-law distributions involved. Hence, we
believe that our results can be extrapolated to hundreds and billions
of web pages if we have the right power law exponents of the dis-
tributions involved.

Another issue is that the query distribution of web search en-
gines is not static. However, the changes in time are small. In fact,
in [2] they find that the pairwise correlation among all possible 3-
week periods of the query distribution for 15-weeks was always

over 99.5%. This implies that daily or weekly updates to the set of
essential web pages should be enough. These updates are not only
necessary due to changes in the query stream, but also because in
practice there will be changes in the set of web pages available for
indexing. Hence, our approach can be another way to define peri-
odical updates to the index of a web search engine.

Regarding the secondary index problem, we can design a crawl-
ing algorithm driven by the query distribution, as mentioned in [1].
This approach would gather relevant pages for the secondary index
and should also improve the pool of pages available for selecting
the essential web pages for the main index.

The problem we have solved not only can be used to reduce the
size of the main index of a web search engine. Indeed, if we can
predict the query intention, we could use the click knowledge of the
overall web search engine to build optimized indices for vertical
search engines tailored to a particular intention. The same idea
applies to other query subsets such as queries coming from a given
country or language. In these vertical search engines we can have
tailored ranking functions as well as tailored user experiences.

Other problems where our results can be used include:

e Optimize the selection of the cache of web pages in web
search engines, if there are limited memory resources.

e Optimizing the indexed web pages in each local server of a
distributed web search architecture given finite memory re-
sources [3, Section 10.6.2].

e Optimizing document caching in a distributed web search
scheme [3, Section 11.4.5] where each local server caches a
small set of documents (in principle, just the most frequently
accessed) to reduce the query search time.

e Optimizing the indexed documents in any P2P distributed
search scheme, given the local resources defined by every
peer [3, Section 10.8].
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Appendix: Proofs of Lemmas

Proof of Lemma 1. Let II be any instance that has the given g-
degree and d-degree distributions.

Observe that, since the sum of the degrees has to be equal to the
sum of the cardinalities, and since o, 8 > 2, II satisfiesn = ©(m).

Let the largest cardinality be u; then u = © (n%) Let T C
S be the subclass of sets having cardinality at least € - u, for an
unspecified constant € = (o, ) > 0. We have |T] = © (n%)
Also, let K be the largest integer such that there are at least K sets
of cardinality at least KKK, (1 - (1 - %)K“n K]). Then,
K =0 (31%)-

In2lnn

Let 7" C T be the subclass of sets having the largest K cardinal-
ities in 7 (breaking ties arbitrarily). We have maxger |S| = u,
and minge7 |S| <u— K.

We then create another subclass of sets I/: this class will contain
K [In K7 sets, and will be disjoint from 7. Specifically, for each
j=1,...,K[In K] -1, we putin U exactly one set S; of cardi-
nality K KMo KT (£22)7. Moreover, U will contain one final set
So of cardinality > g7 |S| — Zf:q“ KIZL g KMn K (K217,

For each set S € 7 U U, and for each element e € S, (i) create
anew set S’ = S’(S, e), (ii) remove e from S, and (iii) add e to
S’ (which will then have cardinality 1). Observe that, at the end of
this process, no old item degree changes; all the sets that had car-
dinality at least eu are now empty, and we have introduced at most

YL GEPiem)+u- K =0 (n% new sets of cardinality
1. Since the number of sets that had cardinality 1 was ©(n), the
d-degree power-law distribution is preserved at 1.

As asecond step, create aset X of ) ¢ ./ |S| = © (u - K) new
elements — the elements in X will end up having degree 2 in our
construction. That is: (i) assign each element x € X to exactly one
set S € T, so that each set gets a number of elements equal to its
original cardinality; also (ii) assign each element x € X to exactly
one set S € U, so that each set gets a number of elements equal to
its original cardinality. In this step we also add ©(u - K) = o(n)
new elements of degree 2 — again, since the number of degree 2
elements in the g-degree distribution was ©(n), the distribution is
preserved.

The third and final step of our construction fills up the sets in
T — T'. Pick the largest such set .S, and fill it with new elements.
Make all the other sets in 7 — 7~ subsets of S. Observe that there

will be |S| = O (n%) new elements, and that their degree will be
atmost |T| = O (n%)

The g-sequence guarantees that, foreach 1 < d < O (n%f), the
number of items having degree d is at least 2 (7% ) > (nk 5 ) )

We add at most O (nl/ s ) new nodes with that degree; since

B — a > 1, we have that we add at most an o(1) fraction of new
nodes of degree d, for each possible d. The g-sequence is therefore
preserved.

Finally, let TT" be the new instance. Observe that it follows the
original g-degree power law, and d-degree power law, distributions.
Observe also that greedy will pick the largest K sets in U/ (plus at
most one set in 7 — 7), while the optimal solution would pick the
sets in 7'. An easy calculation then shows the result. ]

Proof of Lemma 2. Let X; be the number of elements having
1
g; < Q = € -2 that end up inside S;, and in no other set Sj/

suchthatd; > L = 5_#&*—2). Observe that X; lower bounds
the number of (L + 1)-certifying elements of S;. Then, a simple
calculation shows that E[X;] > (1 — O(¢)) - d;.

Let G = {j|d; > 123"}, Since edges are inserted inde-
pendently in the bipartite graph, the Chernoff bound guarantees
that, with probability 1 — o(1), for each j € G it will hold that
X; > (1-0(e)) - dj.

Moreover, the Chernoff bound also guarantees that, with prob-
ability 1 — o(1), for each j € G, it will hold that |S;| <
(1+ O(e)) - d;j. Analogously, with probability 1 — o(1), for each
j € [m] — G, we will have that [S;| < 203

Now, let G' = {j | d; > 2051#} We know that, for each j €
G, itholds that |S;| = (14 O(e)) - d; and the number of (L + 1)-
certifying elements in \S; is at least (1 — O(¢)) - d;.

Now consider the generic iteration K of Algorithm 1 (or, of
the classical greedy algorithm) . Suppose that it brings in the set
Si. Suppose furthermore, that it produces a gain v satisfying
vy > 2061# Then, since the gains are decreasing, we will have
that |S71,155],...,|Sk| > . and therefore each of them contains
at least (1 — O(g)) - v many (L + 1)-certifying elements. Since
L < ~, this implies that we can choose ¢1,...,fk—1 < €7 in
Theorem 1.

The decreasing property of the gains guarantees that the cover-
ing produced by greedy has cardinality at least v - K. Theorem 1
guarantees that the dual has value at most equal to the covering pro-
duced by greedy plus (K — 1) - e. It follows that Algorithm 1 can
return, and certify, a (1 — O(g))-approximation. O



