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Abstract— We present a novel Bayesian framework for facial
action unit recognition. The first key observation behind this
work is sparsity: out of possible 45 (and more) facial action
units, only very few are active at any moment. The second is the
strong statistical co-occurrence structure: most facial expres-
sions are made by common combinations of facial action units,
so knowing the presence of one can act as a strong prior for
inferring the presence of others. We developed a novel Bayesian
graphical model that encodes these two natural aspects of
facial action units via compressed sensing and group-wise
sparsity inducing priors. One crucial aspect of our approach
is the allowance of overlapping group structures, which proves
useful in dealing with action units that occur frequently across
multiple groups. We derive an efficient inference scheme and
show how such sparsity and co-occurrence can be automatically
learned from data. Experiments on three standard benchmark
datasets show superiority over the state-of-the-art.

I. INTRODUCTION

The Facial Action Coding System (FACS) [9] is the
most comprehensive catalogue of unique facial actions that
correspond to independent motions of the face. FACS enables
the measurement and scoring of facial activity in an objective
and quantitative way, and is often used to discriminate be-
tween subtle differences in facial motion. However, manual
labeling of action units (AUs) is extremely time consuming
and requires specific training. It is often infeasible to hand
label all or even a subset of AUs. Computer vision hopes to
alleviate these challenges via automatic AU recognition [30].

This paper exploits two core properties of facial action
units. First, we observe that out of a large number of possible
AUs, only a few are observed to be present at any moment.
For example, even for complex expressions such as disgust or
surprise, less than five AUs are activated (see Figure 1). Such
sparsity in action unit space can be very informative for the
purpose of AU recognition, as a learning machine can focus
all its resources towards recovering the most likely AUs.
Further, recent advances in compressed sensing [13], [16]
have shown how much computational efficiency such sparsity
provides without compromising the quality of the results.
Our model incorporates compressed sensing in a Bayesian
framework and inherits similar advantages, modeling the
sparsity in action unit space in a principled manner.

Another important observation is the existence of strong
co-occurrence structure in action units, such as AU1+2
when the eyebrows are raised. Figure 1 shows examples
of frequently occurring AU combinations. There is much
evidence, both theoretical and empirical, of this type of co-
occurrence structure. Perhaps the most well-known are the
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Fig. 1. Facial action units have strong sparsity and co-occurrence structure.
Even for complex expressions such as disgust or surprise, less than five out
of 45 action units are activated. Further, groups of action units tend to
co-occur in similar expressions. We exploit these two properties for facial
action unit recognition.

studies by Ekman [10] who showed certain combinations
of AUs often occur together in expressions of pain and
emotion. Further, our analysis on a spontaneous expression
dataset [17] revealed that 10 AU groups occurred in 48%
of the time in which more than one AU was present, and
in more than 55% of instances of AU7 (lid tightener), it
co-occurred with AU4 (corrugator), suggesting only a few
groups account for many of the possible AU combinations.

The existence of strong co-occurrence structure suggests
that the presence of one AU can act as a strong prior for
the presence of others, e.g., detecting AU6 (cheek raiser)
is difficult due to very subtle changes in appearance and
geometry of the face, but it is known to co-occur quite
frequently with AU12 (in a “Duchenne smile”), so the
presence of AU12 increases the chance of AU6 being ac-
tivated. Co-occurrence information has recently started to
prove useful in sparsity-based methods [14], where groups of
variables are constrained to be zero/non-zero simultaneously.
This has a natural connection to AU recognition: we want
frequently co-occurring AUs to be active simultaneously.
One crucial requirement is a way to deal with overlapping
groups, as an example AU25 (lips apart) appears in many
different combinations. Our proposed method leverages the
co-occurrence structure in action unit space, and naturally
handles overlapping AU groups (detailed in Section III-D).

We developed a Bayesian framework that simultaneously
handles the properties of sparsity and co-occurrence structure



in a principled manner, using compressed sensing and group-
wise sparsity inducing priors. We extend the recent work
in Bayesian Compressed Sensing [16] by incorporating a
multivariate Normal-Gamma hierarchical prior term, and
show that the previous work [16] is a special case of our
model. Finding the true underlying group structure is an
open problem in the group sparsity literature and many
resort to a manual definition [15]. Instead, we automatically
learn the optimal group definitions using the co-occurrence
statistics computed from an independent, large-scale dataset
of spontaneous expressions [17], and show empirically that
it generalizes well across datasets. Additionally, our model
can handle partially labeled data, potentially reducing the
labeling burden on FACS coders. Also, the uncertainties are
maintained over the course of the Bayesian inference; thus,
information from (a) the observations, (b) compressed AU
labels, and (c) group sparsity constraints are combined in a
principled manner. To the best of our knowledge, this work
is the first to exploit both the sparsity and co-occurrence
structure of AUs. In summary, our main contributions are:
• A Bayesian model that exploits sparsity and co-occurrence

structure for detecting AUs, using compressed sensing and
group-wise sparsity inducing priors.

• An optimal AU group structure automatically learned from
co-occurrence statistics of independent data.

• Superior performance over the state-of-the-art on the
CK+ [19], G.-FERA [3], and DISFA [21] datasets.

• MATLAB code available at http://people.csail.
mit.edu/yalesong/fg15

II. RELATED WORK

A comprehensive review on facial expression recognition
can be found in [30]. Most approaches are direct applications
of existing classification techniques, such as SVMs [4], [28]
and Bayes Nets [26], operating on geometric or appearance
features such as histograms of oriented gradients (HOG)
and Gabor energy filters. Previous work on AU detection
from video includes Valstar and Pantic [27], who demon-
strate high agreement with human coders on 15 AUs, and
Bartlett et al. [4] who use a framework combining Gabor
features and SVMs to detect 17 AUs. Valstar et al. [29] have
also presented a hybrid SVM-HMM system using Gabor
features to detect 23 AUs and, in follow-up work [28],
included comparisons over 12 AUs. Although sparsity in
the feature space has been addressed in facial expression
analysis [20], we would like to point out that, unlike our
approach, these methods neither model the sparsity of AU
space, nor encode the co-occurrence structure.

Related to the task of modeling AU co-occurrence statis-
tics is multi-task learning [7]. Tian et al. [24] is perhaps
the most direct application of concepts in multitask learn-
ing to AU recognition, where a single Neural Network
with multiple outputs was trained. We’d like to highlight
that such methods mostly provide a boost in accuracy via
shared representation as opposed to direct encoding of the
co-occurrence property. Tong et al. [26], [25] presented a
dynamic Bayesian network (DBN) for inference and showed

that learning the relationship between AUs strengthens pre-
diction. Li et al. [18] extended the DBN approach for
measuring the intensity of action units. Missing from such
methods is the capability to address sparsity, which we show
to be very useful for AU recognition.

Modeling sparsity in the label space has only been ad-
dressed recently. Compressed sensing is perhaps one of the
more promising methods [13], [1], [16]. Hsu et al. [13]
proposed compressing the sparse label space in order to
reduce the multiclass problem into simpler regression tasks.
Our work builds upon this line of research and extends the
Bayesian framework proposed by Kapoor et al. [16]. The
key differentiating aspect of our work is to explicitly model
and learn the co-occurrence structure, which was missing
from the earlier work. To the best of our knowledge, this
paper is the first to propose exploiting both the sparsity
and co-occurrence structure of AUs. Finally, the ability to
marginalize over unknown labels allows us to learn good
recognition models even with partially observed labels.

The main novelty in this work is the use of group sparsity
over facial action units to exploit both the sparsity and co-
occurrence structure. Due to its ability to encode group
structure in the variables of interest, group sparsity has
recently gained much interest [15], [23], [12]. In a Bayesian
framework, Raman et al. [23] used group-lasso to exploit co-
occurring patterns of marker proteins sampled from patients
diagnosed with breast cancer. The key difference in our work
is the use of regression functions to jointly optimize sparsity
and the input-output compatibility. Zhong et al. [31] used
group sparsity over the image space for AU recognition,
where the face image is divided into non-overlapping patches
and grouped by their conceptual roles in making expressions.
Different from their approach, our notion of group sparsity
is focused on the output (action unit) space, as opposed to
the input (image) space, which enables more direct control
of sparsity in action units.

III. OUR APPROACH

We cast the problem of detecting facial action units as
a multi-label binary classification problem. In particular,
we build upon Bayesian Compressed Sensing (BCS) [16]
and extend it to exploit both sparsity and co-occurrence
structure via group-wise sparsity inducing priors. Our main
technical contribution is the incorporation of multivariate
Normal-Gamma hierarchical priors over the output variables
to encourage sparsity among overlapping groups of AUs.

We first briefly review the BCS approach, which be-
comes the foundation of ours (Section III-A). Our pro-
posed Bayesian Group-sparse Compressed Sensing (BGCS)
is described next (Section III-B), followed by parameter
estimation using variational Bayes (Section III-C). Note that
some AUs may appear in multiple different groups (e.g.,
AU25 in Figure 1); we describe how our model deals with
overlapping groups (Section III-D). Finally, we discuss the
case with partially-observed AU labels (Section III-E).

Notation: We denote by x = [x1, · · · , xd] ∈ Rd the
input data and by y = [y1, · · · , yl] ∈ {0, 1}l the corre-
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Fig. 2. Factor graph representations of (a) Bayesian Compressed Sensing
(BCS) and (b) Bayesian Group-sparse Compressed Sensing (BGCS). The
input is x, the multi-label output is y (fully/partially observed during
training, completely unobserved during testing). The sparse label y is
compressed through a sensing matrix Φ, resulting in the latent variable
z ≈ Φy. The sparsity is induced via α that follows independent Gamma
distributions. The input-output compatibility is learned through a set of
regression functions with weight W, mapping the input x to the compressed
output z, i.e., z ≈ Wx. Notice that our BGCS model encourages group-
wise sparsity over the output y, allowing us to exploit both sparsity and
co-occurrence structure of action units in a principled manner.

sponding multi-output labels, e.g., the presence/absence of
AUs. The notation yj refers to the j-th element of a vector.
The sets of input data and output labels are denoted by
X = {x1, · · · ,xN} ∈ Rd×N and Y = {y1, · · · ,yN} ∈
{0, 1}l×N , respectively. Further, we use subscripts L and
U to denote labeled and unlabeled data, respectively; Y =
YL∪YU . For clarity of the presentation, we omit the sample
index subscripts whenever it is clear from the context.

A. Bayesian Compressed Sensing: A Review

BCS learns, in a Bayesian framework, an input-output
mapping function y = F (x) by considering the following
two tasks simultaneously. One is compressed sensing: re-
covering the output signal y, which is assumed to be sparse,
from a lower dimensional “compressed” signal z ∈ Rk,
obtained through a “sensing” matrix Φ ∈ Rk×l that satisfies
the restricted isometry property [6], z ≈ Φy. Another is
regression: learning the relationship between the input x and
the compressed signal z using a set of k regression functions
with weights W ∈ Rk×d, z ≈Wx.

Figure 2 (a) illustrates the BCS model; the upper part
(involving α,y, z,Φ) corresponds to compressed sensing,
the lower part (involving z,x,W) corresponds to regression.
The latent variable z plays the role of balancing between
the two tasks, optimizing the compatibility between the
input x and the compressed output z, while simultaneously
encouraging sparsity of the output y, i.e., Φy ≈ z ≈ Wx.
The joint Bayesian formulation makes the BCS capable of
capturing important statistical relationships amongst different
variables of interest, improving accuracy [16].

To induce sparsity, BCS defines a zero-mean univariate
Gaussian prior over each element of the output, yj ∼
N (0, 1/αj), where the precision (inverse variance) αj fol-

lows the Gamma distribution αj ∼ Γ(a0, b0). Each Normal-
Gamma prior over yj is assumed to be independent of each
other, and the prior over y has the form:

p(y) =

l∏
j=1

p(yj) =

l∏
j=1

∫ ∞
0

p(yj |αj)p(αj)dαj (1)

=

l∏
j=1

∫ ∞
0

N (yj ; 0, 1/αj)Γ(αj ; a0, b0)dαj (2)

This is also known as the Gaussian scale mixture, where
the mixing distribution on the precision p(αj) is the Gamma
distribution [22]. The integral form in Equation 2 follows the
student-t distribution that has a significant probability mass
around zero. Consequently, with a proper choice of a0 and
b0, most elements of y are going to be zero unless otherwise
necessary to describe the observed data, encouraging spar-
sity of the output. Notice that sparsity is encouraged only
element-wise due to the independence assumption among
different elements of y, limiting its use for exploiting co-
occurrence structure among the output elements.

B. Bayesian Group-Sparse Compressed Sensing

To exploit both sparsity and co-occurrence structure, our
Bayesian Group-sparse Compressed Sensing (BGCS) allevi-
ates the element-wise sparsity assumption and instead defines
a group-wise sparsity prior over the output space.

Let G = {g1, · · · , gG} be a set of groups, with each
group g having a set of dg indices. We define a zero-mean
dg-dimensional multivariate Gaussian prior over each group
of the output, yg ∼ N (0dg , α

−1Idg ), where yg is a sub-
vector of y formed by taking g elements, 0dg is a zero-
vector of length dg , and Idg is the dg × dg identity matrix.
The precision parameter α is again assumed to follow a
Gamma distribution, α ∼ Γ(a0, b0). Assuming independence
between groups, we express the prior over y as:

p(y) =

G∏
j=1

p(ygj ) =

G∏
j=1

∫ ∞
0

p(ygj |αj)p(αj)dαj (3)

=

G∏
j=1

∫ ∞
0

N (ygj ; 0dgj
,

1

αj
Idgj )Γ(αj ; a0, b0)dαj (4)

Notice that elements within a group yg are not independent
anymore; rather, as can be seen from the integral form in
Equation 4, they follow the multivariate student-t distribu-
tion. Consequently, elements within the same group will tend
to zero simultaneously, encouraging group-wise sparsity; this
is the desirable property to achieve exploiting both sparsity
and co-occurrence structure of action units. Also notice that,
when

∑
j dgj = l for ∀j, dgj = 1, our model reduces to the

conventional BCS model, ignoring any structural information
among action units, making the BCS a special case of ours.

Figure 2 (b) shows the factor graph representation of our
BGCS model. The lower part remains identical to that of
the BCS; we are still optimizing the compatibility between
the input x and the compressed output z. Different from the



BCS, however, sparsity is induced for each group of elements
yg with a multivariate Normal-Gamma distribution.

We now formalize our BGCS model. The observables
include input data X = {xi}Ni=1 and the sensing matrix Φ;
in this work, Φ is set with random values between -1 and
1, which satisfies the restricted isometry property [6]. The
unknowns include output labels Y = {yi}Ni=1, compressed
labels Z = {zi}Ni=1, precision parameters A = {αi}Ni=1, and
the regression weight W. With these variables, the posterior
p(·) = p(Y,Z,A,W|X,Φ) is expressed as:

p(·) =
1

Z
p(W)

N∏
i=1

fxi(W, zi)gΦ(yi, zi)p(yi) (5)

where Z is a normalization term. The prior over the regres-
sion weight W is defined for each of the k regression func-
tions as the d-dimensional spherical Gaussian distribution,
p(W) =

∏k
j=1N (wj ; 0d, Id). The two potential functions

fxi(W, zi) and gΦ(yi, zi) are defined as:

fxi(W, zi) = e−
‖Wxi−zi‖

2

2σ2 , gΦ(yi, zi) = e
− ‖Φyi−zi‖

2

2χ2 (6)

Intuitively, fxi(W, zi) measures the compatibility between
the input x and the compressed output z determined by W,
while gΦ(yi, zi) measures the compatibility between y and
z compressed by Φ. The variance terms σ2 and χ2 control
how tight we want each compatibility to be; by changing
the variance terms we can fine-tune the relative importance
of the two potentials. We find the optimal values of the two
terms via cross-validation.

Finally, the group-sparse prior over yi is given in Equa-
tion 4. The two terms a0 and b0 of the prior p(yi) control
the shape and (inverse) scale of the Gamma distribution, re-
spectively, determining the level of sparsity over the groups.
Following [16], we initialize values of the two terms to 10−6,
which makes α close to a diffuse (non-informative) prior
(i.e., a distribution of the parameter with equal probability
for each possible value), then optimize them via Bayesian
inference, described below.

C. Variational Bayes Inference

Given input data X with observed and unknown labels
YL and YU , respectively, the goal of the inference is to
compute the posterior over the unlabeled data p(YU |X,YL)
by integrating out all other latent variables of the model.
In general, performing an exact inference is intractable for
forms that involve the product of Gaussian and Gamma
distributions [22]; thus, approximate methods are commonly
used. In this work, we perform approximate inference,
maximizing the variational lower bound by making a fully
factorized (i.e., mean field) approximation of the posterior.
This method is commonly called the Variational Bayes (VB).

Let ξ = {YU ,Z,A,W} be all the unknowns of our
model, and q(·) be an approximation of the true posterior
p(·). We want to maximize the lower bound J (q):

J (q) =

∫
ξ

q(ξ) log
p(ξ|X,Φ)

q(ξ)
≤ log

∫
ξ

p(ξ|X,Φ) (7)

The mean field approximation q(ξ) of the true posterior has
the following fully factorized form:

q(ξ) = q(YU )q(Z)q(A)q(W) (8)

where further factorizations are made per-data for q(YU ) =∏
i∈U q(yi) and q(Z) =

∏
i∈L∪U q(zi); per-data and per-

group for q(A) =
∏

i∈L∪U
∏G

j=1 q(α
j
i ); and per-function

for q(W) =
∏k

j=1 q(w
j).

VB optimizes the objective by iteratively updating each
of the factorized distributions q(·). Specifically, at each
iteration t, the update rules for the Gaussian terms q(yi) =
N (µyi

,Σyi) (and similarly q(zi) and q(wj)) and the Gamma
term q(αj

i ) = Γ(aij , bij) is:

Update qt+1(yi) :

Σt+1
yi =

[
diag(E[αt

i]) + χ−2ΦTΦ
]−1

µt+1
yi = Σt+1

yi χ
−2ΦTµt

zi

Update qt+1(zi) :

Σt+1
zi =

[
σ−2Ik + χ−2Ik

]−1
µt+1

zi = Σt+1
zi

[
σ−2µt

Wxi + χ−2Φµt+1
yi

]
Update qt+1(wj) :

Σt+1
wi

=
[
σ−2XXT + Id

]−1
µt+1

wj = Σt+1
wj σ

−2X[µt+1
Z (j, :)]T

Update qt+1(αj
i ) :

at+1
ij = a0ij +

1

2
dgj

bt+1
ij = b0ij +

1

2

[
‖µt+1

yji
‖22 + tr

(
Σt+1

yji
(gj , gj)

)]

where the vector αi of length l is formed by repeating each
αj
i dgj -times. Note that the above update rules assume that

the groups do not overlap; below we describe how to deal
with overlapping group structure. The most expensive step
in this scheme is the inversion of a d×d matrix for updating
Σt+1

wi
; this is an O(d3) update that is independent of the

number of labels. The inversion of a l×l matrix for updating
Σt+1

yi is not needed when the labels are fully observed, e.g.,
in training. This inference scheme, together with compressed
sensing, makes our model particularly efficient in dealing
with a high-dimensional output space.

Alternating between the above updates can be seen as
message passing between different layers of the factor graph
shown in Figure 2 (b). The core idea is to determine a
configuration of latent variables that fuses information for
both the feature space and the label space that is group-wise
sparse. Specifically, the latent variables Z are constrained
by feature vectors X via the linear regression functions W.
These latent variables also need to align themselves with the
output labels Y through the sensing matrix Φ and the group-
wise sparsity by α. Consequently, the resulting inference
procedure over the graphical model leads to a labeling of



AUs that captures our beliefs about the sparsity and co-
occurrence structure of the facial action units.

D. Overlapping Groups

The assumption that AU groups do not overlap may pose
a serious problem in AU recognition because some AUs
often appear in multiple groups. For example, AU4 (eye
brow lowerer) could co-occur with AU7 (lid tightener) and/or
AU45 (blink) in three different settings, i.e., AU 4+7, AU
4+45, and AU 4+7+45. However, the strict disjoint-group
assumption would allow only one of the three AU groups to
exist. Therefore, in order to encode co-occurrence structure
correctly, we must allow overlapping group definitions.

Similar to Jacob et al. [15], we handle overlapping groups
by explicitly duplicating the label vector y and the sensing
matrix Φ that correspond to the elements belonging to mul-
tiple groups. Specifically, we define y′ = [yg1 ; · · · ; ygG ] ∈
RdG and Φ′ = [Φ(:, g1); · · · ; Φ(:, gG)] ∈ Rk×dG , where
dG =

∑
j dj . With this modification, the inference procedure

of Section III-C remains the same, except for the update rules
of duplicated output variables q(y′):

Σt+1
y′i

=
[
E[αt

i]IdG + χ−2Φ′TΦ′
]−1

µt+1
y′i

= Σt+1
y′i

χ−2Φ′Tµt
zi

We then compute Σt+1
yi and µt+1

yi by marginalizing over
the duplicated elements of y′. The duplication method is
simple to implement and works well for a small number
of overlapping groups [15]; when many groups overlap,
however, other methods such as marginalizing prior inverse
variances [2] are used for better scalability.

Our method of handling overlapping groups has an im-
portant property: it allows AUs in the same group to have
different prior distributions, as it should be, not an identical
one. To see this, consider a set of groups that jointly contains
certain AUs that occur more frequently (e.g., AU25). Because
we compute µt+1

yi by marginalizing over the duplicated
elements of all overlapping groups, AUs that appear across
multiple groups end up having a higher posterior probability.

E. Handling Partially Labeled Data

Our approach naturally handles partially observed labels
YU by marginalizing over the unobserved values as a part of
the inference procedure. Consider an input xi with observed
labels yo

i and unobserved labels yu
i . Then, all the above

mentioned update steps remain the same except for the
update equation of µt+1

zi , which now becomes:

µt+1
ip

= Σt+1
ip

[
σ−2µt

Wxi + χ−2Φuo[µt+1
yui

; yo
i ]
]

where Φuo represents a reordering of the sensing matrix Φ
as per the indices of the unobserved and observed labels.

IV. OBTAINING GROUPS OF ACTION UNITS

One way to obtain AU groups is to use existing def-
initions of prototypical expressions of emotion from the
psychology literature [11]. However, these descriptions may
miss naturally occurring combinations that do not make

TABLE I
DEFINITIONS OF THE 24 FACS LABELS CONSIDERED IN THIS PAPER.

AU Definition AU Definition AU Definition
1 Inner brow raiser 11 Nasolabial deepen. 22 Lip funneler
2 Outer brow raiser 12 Lip corner puller 23 Lip tightener
4 Brow lowerer 14 Dimpler 24 Lip pressor
5 Upper lid raiser 15 Lip corner depress. 25 Lips part
6 Cheek raiser 16 Lower lip depress. 26 Jaw drop
7 Lid tightener 17 Chin Raiser 27 Mouth stretch
9 Nose wrinkler 18 Lip puckerer 43 Eyes closed

10 Upper lip raiser 20 Lip stretcher 45 Blink

up a prototypic expression of emotion. Instead, we obtain
AU groups by computing co-occurrence statistics from an
independent, large-scale dataset of spontaneous facial expres-
sions [17]. By definition, the co-occurrence statistics capture
both the commonly occurring combinations (present groups)
and those do not occur together (absent groups). Thus,
our approach effectively models both the co-occurrence and
mutually exclusive relationships among action units.

We used an independent dataset provided by Kassam [17],
a dataset of facial expressions labeled by two certified FACS
coders. It contains video recordings of subjects watching
emotion eliciting movie clips (704 videos; 88 subjects times
8 clips), with a total length of 61,816 seconds. Frames were
FACS coded for 65 AUs at one second intervals; the coders
had to agree on the labels. This yielded a total of 61,816
label instances.

Considering 24 AUs (see Table I) and excluding 30,134 in-
stances with no AU activation, about half the rest (15,420 in-
stances) contained more than one active AU, showing strong
AU co-occurrence structure in spontaneous facial expres-
sions. The eight most common AU groups were: AU25,26
(1,782 instances); AU4,7 (1,421); AU4,45 (1,207); AU1,2
(796); AU12,45 (587); AU12,25 (538); AU6,7,12,25,26
(518); and AU4,7,45 (411).

To obtain AU groups G, we used AU-conditional thresh-
olding, a more robust approach to the class imbalance
problem than joint thresholding. We computed normalized
co-occurrence statistics conditioned on each AU j, p(AUs|j).
We used a threshold parameter θ to rule out those AUs that
co-occurred less than θ percentage of the time conditioned
on j, i.e., gj = arg p(AU|j) ≥ θ. The approach is different
to joint thresholding, where all AU groups are considered
jointly; the resulting AU groups will be dominated by more
frequently occurring AUs, failing to capture less common
groups. The optimal θ was obtained via cross-validation.

V. EXPERIMENTS

A. Datasets and Methodology

Our framework is summarized in Figure 3. We used the
Nevenvision facial landmark detector1 to identify 22 facial
landmarks within each frame of the video. The face was
segmented using the landmarks in rigid locations; an affine
warp was performed on the bounded face region; and the
segmented face patch was rescaled to 120x120 pixels and

1Licensed from Google, Inc.



Fig. 3. Our AU recognition framework: (1) the face is registered using 22
automatically detected landmarks; (2) appearance descriptors (PHOG) are
extracted; (3) our Bayesian model detects active AUs, exploiting sparsity
and co-occurrence structure.

converted to grayscale. We then computed Pyramid His-
togram of Gradients (PHOG) [5] features with eight bins on
three different pyramid levels from the normalized images.

We used the following datasets in our experiments:
CK+ [19]: The extended Cohn-Kanade (CK+) dataset con-
tains 593 recordings (123 subjects) of posed and non-posed
sequences recorded under controlled lighting. We took the
last frame (peak expression) from each sequence as these
have been FACS coded; this results in 593 frames.

G.-FERA [3]: The GEMEP corpus consists of acted emo-
tion sequences that involve speaking and rigid head motion,
which makes it more challenging than the CK+ dataset. We
followed the protocol used in the FERA challenge [28], using
87 sequences (5,172 frames; 7 subjects) that were FACS
coded and available as training data.

DISFA [21]: The DISFA corpus consists of spontaneous
and naturalistic sequences of facial responses to YouTube
videos. These sequences are challenging as they tend to be
more subtle than acted expressions. We use 27 recordings
(130,815 frames; 27 subjects) of spontaneous sequences.

TABLE II
COMPARISON OF MODELS TESTED IN OUR EXPERIMENTS.

Property SVM RLS BCS BGCS
Sparsity 5 5 3 3
Co-occurrence 5 5 5 3

In addition to evaluating our BGCS model, we selected
three baselines to test individual properties in our model;
Table II summarizes the different properties.

SVM: We used a linear SVM (one-vs-all) with an option
to output probability estimates. The SVM cost term C was
cross-validated from the set C = 10n, n = [−2 : 1]. A
decision function was defined with a probability threshold δ,
cross-validated from the set δ = [0 : .05 : 1].

RLS: For an approach without the sparsity and co-
occurrence properties, we used the regularized least squares
(RLS), 1

2‖Y −WX‖2F + λ‖W‖F , where W ∈ Rl×d is
a weight matrix and ‖ · ‖F is the Frobenius norm. The
parameter λ was cross-validated from the set λ = [0 : .1 : 1].

BCS: For an approach without the co-occurrence property,
we used the BCS [16]. We varied the two scale terms
χ = 10n, σ = 10n, n = [−2 : 0] (see Equation 6). The
compression level was varied among c = [.2 : .2 : 4],
which determined the dimension of the compressed space
by k = cd with d-dimensional input. Optimal values of all
hyper-parameters were determined via cross-validation.

TABLE III
COMPARISON TO THE STATE-OF-THE-ART, ON DIFFERENT SUBSETS OF

AUS (SEE THE TEXT FOR THE LIST OF AUS IN EACH SUBSET).

Across subsets of AUs SVM [8] MCF [8] BGCS
CK+ F1 Score 0.71 0.76 0.90

(10 AUs) Accuracy n/a n/a 94.7
G.-FERA F1 Score 0.58 0.57 0.56
(12 AUs) Accuracy n/a n/a 76.4
Across subsets of AUs AdaBoost [26] DBN [26] BGCS

CK+ F1 Score n/a n/a 0.86
(14 AUs) Accuracy 91.2 93.3 93.4
Across subsets of AUs SVM [21] BGCS
DIFSA F1 Score n/a 0.60

(12 AUs) Accuracy 85.7 86.8

TABLE IV
MEANS AND STANDARD DEVIATIONS COMPARISON USING ALL 24 AUS.

Across all 24 AUs SVM RLS BCS BGCS

CK+ F1 Score 0.50 (0.14) 0.57 (0.18) 0.63 (0.20) 0.66 (0.18)
Accuracy 85.1 (0.04) 88.2 (0.06) 90.3 (0.05) 90.5 (0.05)

G.-FERA F1 Score 0.39 (0.05) 0.45 (0.06) 0.43 (0.07) 0.43 (0.07)
Accuracy 81.5 (0.03) 82.7 (0.02) 82.8 (0.01) 83.2 (0.01)

BGCS (our model): A generalization of BCS with group
sparsity, defined with one additional parameter that deter-
mines the group structure, the AU-conditional thresholding
parameter θ (see Section IV). We cross-validated this from
the set θ = [.2 : .2 : 1]. For a fair comparison, other
parameters (χ, σ, c, a0.b0) were varied as with the BCS.

Note that, except for the SVM, the prediction Y∗ ∈ Rl×N

includes real-valued regression coefficients, which can be
used not only in AU classification but also in AU intensity
estimation; this work focuses on classification. We define a
decision function V : R→ {0, 1}, V (y; δ) = 1 if y ≥ δ and
zero otherwise. The parameter δ was cross-validated from
the set δ = [0 : .05 : 2]. We performed leave-one-subject-out
cross-validation, with data from two subjects for validation
and test, respectively, and the rest for training.

B. Results and Discussion

Comparison to state-of-the-art: We compare our model
to recent state-of-the-art approaches [8], [26], [21]. In
these, different numbers of AUs were considered; for fair
comparison we consider the same set of AUs – in [8]
10 AUs {1,2,4,6,7,12,15,17,25,26} for CK+ and 12 AUs
{1,2,4,6,7,10,12,15,17,18,25,26} for G.-FERA were used;
in [26] 14 AUs {1,2,4,5,6,7,9,12,15,17,23,24,25,27}
for CK+ were used; and in [21] 12 AUs
{1,2,4,5,6,9,12,15,17,20,25,26} for DISFA were used.
Table III shows a comparison of the performances; our
BGCS model outperforms all other baselines except the F1
score on G.-FERA dataset.

Evaluation on 24 AUs: We performed classification on 24
AUs (see Table I). Note that this result is rarely reported in
the literature, mostly because some AUs are hard to detect,
e.g., AU22 (lip funneler) and AU23 (lip tightener). Table IV
shows the average F1-scores and accuracies on two of the
datasets that have labels for 24 AUs. Our BGCS again tops
among the contenders, except for F1-score on G.-FERA.
The standard deviations for F1-scores are quite high because
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Fig. 4. (a) and (b) show the sensitivity of our model on compression
level and group threshold parameters; (c) shows the sensitivity on partially
labeled data. See the text for details.

some AUs are much more challenging to detect than others.
Figure 4 (a) and (b) show the sensitivity of our model on
compression level and group threshold parameters (fixing all
other parameters c = 2.0, θ = 0.8, χ = 0.1, and σ = 0.01).

Partially Labeled Data: We evaluate the robustness of the
proposed method with respect to partial labels. We simulate
missing labels by randomly setting η% of the training data
labels to be unobserved; we varied η = [0 : 5 : 50].
For the SVM and RLS models, the missing labels were
randomly assigned to 1 or 0. For the BGCS, only during
training, we used element-wise sparsity (testing used group-
wise sparsity); we empirically found this performing better,
potentially due to less uncertaintly in estimating the sparsity
(Gamma) prior distributions.

Figure 4 (c) shows the mean F1-scores for the 24 AUs
of different models. These experiments were performed with
c = 2.0, θ = 0.8, χ = 0.1, σ = 0.01. The performance
increase for the BGCS vs. the BCS is due to the group-
wise sparsity during testing (as mentioned, element-wise
sparsity is used for training with partially labeled data). This
highlights the benefit of considering co-occurrence structure.

Overlapping group structures: One crucial aspect of our
approach is the allowance of overlapping group structures,
which allows us to deal with action units that occur fre-
quently across multiple groups. Without this capability, every
AU will be a part of a single group. As a result, frequently
appearing AUs (e.g., AU25) are forced to occur less fre-
quently during inference. The overlapping group structure
helps avoid this problem because frequently occurring AUs
will be a part of multiple groups and are more likely to be
labeled as present (by marginalizing over groups).

As shown in Figure 5, on the CK+ dataset, using BGCS
we achieved the highest per-AU F1 scores on each of the top

15 most frequently occurring AUs. The means and standard
deviations of F1 scores were: SVM (0.42, 0.21), RLS (0.37,
0.23), BCS (0.45, 0.20), and BGCS (0.55, 0.18). On average,
our BGCS performs higher than SVM by .14, RLS by .18,
and BCS by .11.

Group-wise AU detection: We measured performance on
groups of AUs from the CK+ dataset. A prediction was
regarded as correct only if all AUs of a group were detected
simultaneously; this reflects the practical application of de-
tecting combinations of AUs (e.g., expressions of emotion or
pain). To determine which groups to evaluate, we selected
the 12 most frequent AU groups from the CK+ dataset [19].

Figure 6 shows our model significantly outperforming
other baselines: the overall F1 scores were 0.31, 0.36, 0.44,
0.48 for SVM, RLS, BCS, and BGCS, respectively. Notably,
our model performed particularly well on groups with AU26
(AU25+26 and AU1+2+5+25+26); none of the baselines
were able to detect either of the two groups. F1 scores on
AU26 alone were quite low for all four models (0.09, 0.0, 0.0,
0.13, respectively) suggesting our simple appearance features
(PHOG) may have not been discriminative enough to detect
AU26. We believe the group-wise sparsity constraint helped
our model outperform other baselines on AU26: the fact
that AU26 co-occurred frequently with AU25 encouraged our
model to detect them together.

Learning AU groups from [17]: Note that we chose to
use an independent dataset [17] to obtain the group structures
for two main reasons. First, it helps avoid overfitting: using
the same dataset used for training could be problematic
because the resulting model may not generalize well. In
our preliminary analysis on the CK+ dataset, using the
training data for group initialization showed slightly infe-
rior performance (accuracy dropped from 90.7% to 90.4%),
which shows the model is overfitted. Second, our approach
poses an interesting question of whether it is possible to
automatically learn AU groups, based purely on the co-
occurrence statistics, that generalize well across different
datasets. We show this is possible for the three datasets we
have tested, which indeed have different AU co-occurrence
structures. The groups in the CK+ dataset are especially
different because it contains posed facial expressions.

VI. CONCLUSIONS

We have presented a novel method for facial action unit
detection that encodes sparsity of facial action units and
utilizes the co-occurrence between muscle movements on
the face. The benefits of the proposed method include, a
principled approach to exploit sparsity and co-occurrence
structure in a Bayesian framework, the ability to deal with
overlapping groups, superior AU detection performances in
both per-AU and per-group settings, and the robustness to
missing labels. Experiments show improvements over state-
of-the-art for AU detection on posed, acted and spontaneous
data. In addition, we presented results across a much larger
number of AUs than much of the prior work. In the future,
we plan to evaluate our method on the task of AU intensity
estimation.
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