
Reducing Dueling Bandits to Cardinal Bandits

Nir Ailon
CS Dept. Technion

Haifa, Israel
nailon@cs.technion.ac.il

Zohar Karnin
Yahoo! Research

Haifa, Israel
zkarnin@gmail.com

Thorsten Joachims
Cs Dept. Cornell

Ithaca, NY
tj@cs.cornell.edu

May 15, 2014

Abstract

We present algorithms for reducing the Dueling Bandits problem to the conven-
tional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem
is an online model of learning with ordinal feedback of the form “A is preferred to
B” (as opposed to cardinal feedback like “A has value 2.5”), giving it wide applica-
bility in learning from implicit user feedback and revealed and stated preferences.
In contrast to existing algorithms for the Dueling Bandits problem, our reductions
– named Doubler, MultiSBM and Sparring – provide a generic schema for
translating the extensive body of known results about conventional Multi-Armed
Bandit algorithms to the Dueling Bandits setting. For Doubler and MultiSBM
we prove regret upper bounds in both finite and infinite settings, and conjecture
about the performance of Sparring which empirically outperforms the other two
as well as previous algorithms in our experiments. In addition, we provide the first
almost optimal regret bound in terms of second order terms, such as the differences
between the values of the arms.

1 Introduction
When interacting with an online system, users reveal their preferences through the
choices they make. Such a choice – often termed implicit feedback – may be the click
or tap on a particular link in a web-search ranking, or watching a particular movie
among a set of recommendations. Connecting to a classic body of work in economet-
rics and empirical work in information retrieval Joachims et al. (2007), such implicit
feedback is typically viewed as an ordinal preference between alternatives (i.e., “A is
better than B”), but it does not provide reliable cardinal valuations (i.e., “A is very
good, B is mediocre”).

1

ar
X

iv
:1

40
5.

33
96

v1
 [

cs
.L

G
]

 1
4

M
ay

 2
01

4

To formalize the problem of learning from preferences, we consider the following
interactive online learning model, which we call the Utility-Based Dueling Bandits
Problem (UBDB) similar to Yue et al. (2012); Yue & Joachims (2011). At each it-
eration t, the learning system presents two actions xt, yt ∈ X to the user, where X
is the set (either finite or infinite) of possible actions. Each of the two actions has an
associated random reward (or utility) for the user, which we denote by ut and vt, re-
spectively. The quantity ut (resp. vt) is drawn from a distribution that depends on xt
(resp. yt) only. We assume these utilities are in [0, 1]. The learning system is rewarded
the average utility Uav

t = (ut + vt)/2 of the two actions it presents, but it does not
observe this reward. Instead, it only observes the user’s binary choice among the two
alternative actions xt, yt, which depends on the respective utilities ut and vt. In partic-
ular, we model the observed choice as a {0, 1}-valued random variable bt distributed
as

Pr[bt = 0|(ut, vt)] = φ(ut, vt)

Pr[bt = 1|(ut, vt)] = φ(vt, ut) , (1.1)

where φ : [0, 1] × [0, 1] 7→ [0, 1] is a link function. Clearly, the link function has to
satisfy φ(A,B)+φ(B,A) = 1. Below we concentrate on linear link functions (defined
in Sec. 2). The binary choice is interpreted as a stochastic preference response between
the left alternative xt (if bt = 0) and the right alternative yt (if bt = 1). The utility
Uav captures the overall latent user experience from the pair of alternatives. A concrete
example of this UBDB game is learning for web search, where X is a set of ranking
functions among which the search engine selects two for each incoming query; the
search engine then presents an interleaving Chapelle et al. (2012) of the two rankings,
from which it can sense a stochastic preference between the two ranking functions
based on the user’s clicking behavior.

The purpose of this paper is to show how UBDB can be reduced to the conventional
(cardinal) stochastic Multi-Armed Bandit (MAB) problem1, which has been studied
since 1952 Robbins (1952). In MAB, the system chooses only a single action xt ∈ X in
each round and directly observes its cardinal reward ut, which is assumed to be drawn
from a latent but fixed distribution attached to xt. The set X in the traditional MAB
game is of finite cardinality K. In more general settings Dani et al. (2008); Mannor &
Shamir (2011), this set can be infinite but structured in some way. Dani et al. (2008),
for example, assume a stochastic setting in which X is a convex, bounded subset of
Rn, and the expectation µ(x) of the corresponding value distribution is 〈µ, x〉, where
µ ∈ Rn is an unknown coefficient vector and 〈·, ·〉 is the inner product with respect to
the standard basis. We refer to this as the linear expected utility setting. We study here
both the finite setting and the infinite setting.

Main results. We provide general reductions from UBDB to MAB. More precisely,
we use a MAB strategy as a black-box for helping us play the UBDB game. The art is in
exactly how to use a black-box designed for MAB in order to play UBDB. We present
one method, Doubler (Section 3) which adds an extraO(log T) factor to the expected
regret function compared to that of the MAB black-box, assuming the MAB black-box

1One armed bandit is a popular slang for slot machines in casinos, and the MAB game describes the
problem faced by a gambler who can choose one machine to play at each instance.

2

has polylogarithmic (in T) regret, where T is the time horizon. When the MAB black-
box has polynomial regret, only an extra O(1) factor is incurred. This algorithm works
for infinite bandit spaces. We also present a reduction algorithm MultiSBM (Sec-
tion 4) which works for finite bandit spaces and gives an O(log T) regret, assuming the
MAB black-box enjoys an O(log T) expected regret function with some mild higher
moment assumptions. These assumptions are satisfied, for example, by the seminal
UCB algorithm Auer et al. (2002). Our analysis in fact shows that for sufficiently large
T , the regret of MultiSBM is asymptotically identical to that of UCB not only in
terms of the time horizon T but in terms of second order terms such as the differences
between the values of the arms; it follows that MultiSBM is asymptotically opti-
mal in the second order terms as well as in T . Finally, we propose a third algorithm
Sparring (Section 5) which we conjecture to enjoy regret bounds comparable to those
of the MAB algorithms hiding in the black boxes it uses. We base the conjecture on ar-
guments about a related, but different problem. In experiments (Section 7) comparing
our reductions with special-purpose UBDB algorithms, Sparring performs clearly
the best, further supporting our conjecture.

All results in this extended abstract assume the linear link function (see Section 2),
but we also show preliminary results for other interesting link functions in Appendix D.

Contributions in relation to previous work. While specific algorithms for spe-
cific cases of the Dueling Bandits problem already exist Yue et al. (2012); Yue &
Joachims (2011, 2009), our reductions provide a general approach to solving the UBDB.
In particular, this paper provides general reductions that make it possible to transfer the
large body of MAB work on exploiting structure in X to the dueling case in a con-
structive and algorithmic way. Second, despite the generality of the reductions their
regret is asymptotically comparable to the tournament elimination strategies in Yue
et al. (2012); Yue & Joachims (2011) for the finite case as T →∞, and better than the
regret of the online convex optimzation algorithm of Yue & Joachims (2009) for the
infinite case (albeit in a more restricted setting).

In our setting, the reward and feedback of the agent playing the online game are, in
some sense, orthogonal to each other, or decoupled. A different type of decoupling was
also considered in Avner et al.’s work Avner et al. (2012), although this work cannot
be compared to theirs. There is yet more work on bandit games where the algorithm
plays two bandits (or more) in each iteration, e.g. Agarwal et al. Agarwal et al. (2010),
although there the feedback is cardinal and not relative in each step. There is much
work on learning from example pairs Herbrich et al. (2000); Freund et al. (2003); Ailon
et al. (2012) as well as noisy sorting Karp & Kleinberg (2007); Feige et al. (1994),
which are not the setting studied here. Finally, our results connect multi-armed bandits
and online optimization to the classic econometric theory of discrete choice, with its
use of preferential or choice information to recover values of goods (see Train (2009)
and references therein).

Another important topic related to our work is that of partial monitoring games.
The idea was introduced by Piccolboni & Schindelhauer (2001). The objective in par-
tial monitoring is to choose at each round an action from some finite set of actions,
and receive a reward based on some unknown function chosen by an oblivious pro-
cess. The observed information is defined as some (known) function of the chosen
action and the current choice of the oblivious process. One extreme setting in which

3

the observed information equals the reward captures MAB. In the other extreme, the
observed information equals the entire vector of rewards (for all actions), giving rise to
the so-called full information game. Our setting is a strict case of partial monitoring as
it falls in neither extremes. Most papers dealing with partial monitoring either discuss
non-stochastic settings or present problem-independent results. In both cases the regret
is lower bounded by

√
T , which is inapplicable to our setting (see Antos et al. (2012)

for a characterization of partial monitoring problems). Bartók et al. Bartók et al. (2012)
do present problem dependent bounds. Using their work, a logarithmic (in T) bound
can be deduced for the dueling bandit problem, at least in the finite case. However,
the dependence on the number of arms is quadratic, whereas we present a linear one in
what follows. Our algorithms are also much simpler and directly take advantage of the
structure of the problem at hand.

2 Definitions
The set of actions (or arms) is denoted by X . In a standard stochastic MAB (multi-
armed bandit) game, each bandit x ∈ X has an unknown associated expected utlity
µ(x) ∈ [0, 1]. At each step t the algorithm chooses some xt ∈ X and receives from
“nature” a random utility ut ∈ [0, 1], drawn from a distribution of expectation µ(xt).
This utility is viewed by the algorithm.2 The regret at time T of an algorithm is defined
as R(T) =

∑T
t=1(µ(x∗) − ut). where x∗ is such that µ(x∗) = maxx∈X µ(x) (we

assume the maximum is achievable). Throughout, for x ∈ X we will let ∆x denote
µ(x∗)− µ(x) whenever we deal with MAB. (We will shortly make reference to some
key results on MAB in Section 2.1.)

In this work we will use MAB algorithms as black boxes. To that end, we define a
Singleton Bandit Machine (SBM) as a closed computational unit with an internal timer
and memory. A SBM S supports three operations: reset, advance and feedback. The
reset operation simply clears its state.3 The advance operation returns the next bandit
to play, and feedback is used for simulating a feedback (the utility). It is assumed that
advance and feedback operations are invoked in an alternating fashion. For example, if
we want to use a SBM to help us play a traditional MAB game we first invoke reset(S),
then invoke and set x1 ← advance(S), we will play x1 against nature and observe u1
and then invoke feedback(S, u1). We then invoke and set x2 ← advance(S), then
we’ll play x2 against nature and observe u2, then invoke feedback(S, u2) and so on.
For all SBM’s S that will be used in the algorithms in this work, we will only invoke
the operation feedback(S, ·) with values in [0, 1].

In the utility based dueling bandit game (UBDB), the algorithm chooses (xt, yt) ∈
X ×X at each step, and a corresponding pair of random utilities (ut, vt) ∈ [0, 1] are
given rise to, but not observed by the algorithm. We assume ut is drawn from a dis-
tribution of expectation µ(xt) and vt independently from a distribution of expectation
µ(yt). The algorithm observes a choice variable bt ∈ {0, 1} distributed according to
the law (1.1). This random variable should be thought of as the outcome of a duel,

2It is typically assumed that this distribution depends on xt only, but this assumption can be relaxed.
3We assume the bandit space X is universally known to all SBM’s.

4

or match between xt and yt. The outcome bt = 1 (resp. bt = 0) should be inter-
preted as “yt is chosen’ (resp. “xt is chosen”).4 The link function φ, which is assumed
to be known, quantitatively determines how to translate the utilities ut, vt to winning
probabilities. The linear link function φlin is defined by

Pr[bt = 1|(ut, vt)] = φlin(ut, vt) :=
1 + vt − ut

2
∈ [0, 1] .

The unobserved reward is Uav
t = (ut+ vt)/2, and the corresponding regret after T

steps is Rav(T) :=
∑T
t=1(µ(x∗)−Uav

t), where x∗ = argmaxx∈X µ(x). This implies
that expected zero regret is achievable by setting (xt, yt) = (x∗, x∗). In practice,
these two identical alternatives would be displayed as one, as would naturally happen
in interleaved retrieval evaluation Chapelle et al. (2012). It should be also clear that
playing (x∗, x∗) is pure exploitation, because the feedback is then an unbiased coin
with zero exploratory information.

We also consider another form of (unobserved) utility, which is given as U choice
t :=

ut(1 − bt) + vtbt. We call this choice-based utility, since the utility that is obtained
depends on the user’s choice. Accordingly, we define Rchoice

t := µ(x∗) − U choice
t . In

words, the player receives reward associated with either the left bandit or the right ban-
dit, whichever was actually chosen. The utility U choice captures the user’s experience
after choosing a result. In an e-commerce system, U choice may capture conversion,
namely, the monetary value of the choice. Although both utility modelings Uav and
U choice are well motivated by applications, we avoid dealing with choice based utilities
and regrets for the following reason: regret bounds with respect to Uav imply similar
regret bounds with respect to U choice.

Observation 2.1. Assuming a link function where u > v implies φ(u, v) > 1/2, for
any xt, yt, E[Rchoice

t |(xt, yt)] ≤ E[Rav
t |(xt, yt)].

(Due to lack of space, the proof can be found in Appendix E.) The observation’s
assumption on the link function in words is: when presented with two items, the item
with the larger utility is more likely to be chosen. This clearly happens for any reason-
able link function. We henceforth assume utility Uav and regretRav and will no longer
make references to choice-based versions thereof.

2.1 Classic Stochastic MAB: A Short Review
We review some relevant classic MAB literature. We begin with the well known UCB
policy (Algorithm 1) for MAB in the finite case. The commonly known analysis of
UCB provides expected regret bounds. For the finite X case, we need a less known,
robust guarantee bounding the probability of playing a sub-optimal arm too often.
Lemma 2.2 is implicitly proved in Auer et al. (2002). For completeness, we provide an
explicit proof in Appendix A.

4 We have just defined a two-level model in which the distribution of the random variable bt is determined
by the outcome two other random variables ut, vt. For simplicity, the reader is encouraged to assume that
(ut, vt) is deterministically (µ(xt), µ(yt)). Most technical difficulties in what follows are already captured
by this simpler case.

5

Algorithm 1 UCB algorithm for MAB with |X| = K arms. Parameter α affects tail
of regret per action in X .
∀x ∈ X , set µ̂x =∞
∀x ∈ X , set tx = 0
set t = 1
while true do

let x be the index maximizing µ̂x +
√

(α+2) ln(t)
2tx

play x and update µ̂x as the average of rewards so far on action x; increment tx
by 1.
t← t+ 1

end while

Lemma 2.2. AssumeX is finite. Fix a parameter α > 0. LetH :=
∑
x∈X\{x∗} 1/∆x.

When running the UCB policy (Algorithm 1) with parameter α for T rounds the ex-
pected regret is bounded by

2(α+ 2)H ln(T) +K
α+ 2

α
= O(αH lnT) .

Furthermore, lex x ∈ X denote some suboptimal arm and let s ≥ 4α ln(T)/∆2
x.

Denote by ρx(T) the random variable counting the number of times arm x was chosen
up to time T . Then Pr[ρx(T) ≥ s] ≤ 2

α · (s/2)−α.

For the infinite case, we will review a well known setting and result which will
later be used to highlight the usefulness of Algorithm 2 (and the ensuing Theorem 3.1).
In this setting, the set X of arms is an arbitrary (infinite) convex set in Rd. Here, the
player chooses at each time point a vector x ∈ X and observes a stochastic reward
with an expected value of 〈µ, x〉, for some unknown vector µ ∈ Rd.5 This setting was
dealt with by Dani et al. (2008). They provide an algorithm for this setting that could
be thought of as linear optimization under noisy feedback. Their algorithm provides
(roughly)

√
T regret for general convex bodies and polylog(T) regret for polytopes.

Formally, for general convex bodies, they prove the following.

Lemma 2.3 (Dani et al. 2008). Algorithm CONFIDENCEBALL1 (resp. CONFIDENCEBALL2)
of Dani et al. (2008), provides an expected regret ofO

(√
dT log3 T

)
(resp. O

(√
d2T log3 T

)
) for any convex set of arms.

In case X is a polytope with vertex set V and there is a unique vertex v∗ ∈ V
achieving maxx∈X 〈µ, x〉, and any other vertex v ∈ V satisfies the gap condition
〈µ, v〉 ≤ 〈µ, v∗〉 −∆ for some ∆ > 0, we say we are in the ∆-gap case.

Lemma 2.4 (Dani et al. 2008). Assume the ∆-gap case. Algorithm CONFIDENCEBALL1

(resp. CONFIDENCEBALL2) of Dani et al. (2008), provides an expected regret of
O
(
∆−1d2 log3 T

)
(resp. O

(
∆−1d3 log3 T

)
).

5Affine linear functions can also be dealt with by adding a coordinate fixed as 1.

6

Algorithm 2 (Doubler): Reduction for finite and infinite X with internal structure.
1: S ← new SBM over X
2: L ← an arbitrary singleton in X
3: i← 1, t← 1
4: while true do
5: reset(S)
6: for j = 1...2i do
7: choose xt uniformly from L
8: yt ← advance(S)
9: play (xt, yt), observe choice bt

10: feedback(S, bt)
11: t← t+ 1
12: end for
13: L ← the multi-set of arms played as yt in the last for-loop
14: i← i+ 1
15: end while

3 UBDB Strategy for Large or Structured X

In this section we consider UBDB in the case of a large or possibly infinite set of arms
X , and the linear link function. The setting where X is large typically occurs when
some underlying structure for X exists through which it is possible to gain information
regarding one arm via queries to another. Our approach, called Doubler, is best ex-
plained by thinking of the UBDB strategy as a competition between two players, one
controlling the choice of the left arm and the other, the choice of the right one. The ob-
jective of each player is to win as many rounds possible, hence intuitively, both players
should play the arms with the largest approximated value. Since we are working with a
stochastic environment it is not clear how to analyze a game in which both players are
adaptive, and whether such a game would indeed lead to a low regret dueling match
(see also Section 5 for a related discussion). For that reason, we make sure that at all
times one player has a fixed stochastic strategy, which is updated infrequently.

We divide the time axis into exponentially growing epochs. In each epoch, the
left player plays according to some fixed (stochastic) strategy which we define shortly,
while the right one plays adaptively according to a strategy provided by a SBM. At
the beginning of a new epoch, the distribution governing the left arm changes in a way
that mimics the actions of the right arm in the previous epoch. The formal definition of
Doubler is given in Algorithm 2.

The following theorem bounds the expected regret of Algorithm 2 as a function of
the total number T of steps and the expected regret of the SBM that is used.

Theorem 3.1. Consider a UBDB game over a set X . Assume the SBM S in Line 1
of Doubler (Algorithm 2) has an expected regret of c logα T after T steps, for all
T . Then the expected regret of Doubler is at most 2c α

α+1 logα+1 T . If the expected
regret of the SBM is bounded by some function f(T) = Ω(Tα) (with α > 0), then the
expected regret of Doubler is at most O(f(T)).

7

The proof is deferred to Appendix B. By setting the SBM S used in Line 1 as
the algorithms CONFIDENCEBALL1 or CONFIDENCEBALL2 of Dani et al. (2008), we
obtain the following:

Corollary 3.2. Consider a UBDB game over a setX . Assume that the SBM S in Line 1
of Doubler is algorithm CONFIDENCEBALL2 (resp. CONFIDENCEBALL1). If X is a

compact convex set, then the expected regret of Doubler is at most O(
√
dT log3(T))

(resp.O(
√
d2T log3(T))). In the ∆-gap setting (see discussion leading to Lemma 2.4),

the expected regret is bounded by O
(
∆−1d2 log4(T)

)
(resp. O

(
∆−1d3 log4(T)

)
).

In the finite case, one may set the SBM S to the standard UCB, and obtain:

Corollary 3.3. Consider a UBDB game over a finite set X of cardinality K. Let ∆i

be the difference between the reward of the best arm and the i’th best arm. Assume the
SBM S in Line 1 of Doubler is UCB. Then the expected regret of Doubler is at most
O(H log2(T)) where H :=

∑K
i=2 ∆−1i

Memory requirement issues: A possible drawback of Doubler is its need to store
the history of yt from the last epoch in memory, translating to a possible memory
requirement of Ω(T). This situation can be avoided in many natural cases. The first
is the case where X is embedded in a real linear space and the expectation µ(x) is
a linear function. Here, there is no need to store the entire history of choices of the
left arm but rather the average arm (recall that here the arms are thought of as vectors
in Rd, hence the average is well defined). Playing the average arm (as xt) instead
of picking an arm uniformly from the list of chosen arm gives the same result with
memory requirements equivalent to storage of one arm. In other cases (e.g., X is not
even geometrically embedded) this cannot be done. Nevertheless, as long as we are in
a ∆-gap case, as T grows, the arm played as yt is the optimal one with increasingly
higher probability. In more detail, if the regret incurred in a time epoch is R, then the
number of times a suboptimal arm is played is at most R/∆. As R is polylogarithmic
in T , the required space is polylogarithmic in T as well. We do not elaborate further
on memory requirements and leave this as future research.

4 UBDB Strategy for Unstructured X

In this section we present and analyze an alternative reduction strategy, called MultiSBM,
particularly suited for the finite X case where the elements of X typically have no
structure. MultiSBM will not incur an additional logarithmic factor as our previous
approach did. Unlike the algorithms in Yue & Joachims (2011); Yue et al. (2012), we
will avoid running an elimination tournament, but just resort to a standard MAB strat-
egy by reduction. Denote K = |X|. The idea is to use K different SBMs in parallel,
where each instance is indexed by an element in X . In step t we choose a left arm
xt ∈ X in a way that will be explained shortly. The right arm, yt is chosen according
to the suggestion on the SBM indexed by xt, and the binary choice is fed back to that

8

Algorithm 3 (MultiSBM): Reduction for unstructured finite X by using K SBMs
in parallel.

1: For all x ∈ X: Sx ← new SBM over X , reset(Sx)
2: y0 ← arbitrary element of X
3: t← 1
4: while true do
5: xt ← yt−1
6: yt ← advance(Sxt

)
7: play (xt, yt), observe choice bt
8: feedback(Sxt , bt)
9: t← t+ 1

10: end while

SBM. In the next round, xt+1 is set to be yt, namely, the right arm becomes the left
one in the next step. Algorithm 3 describes MultiSBM exactly.

Naively, the regret of the algorithm can be shown to be at most K times that of a
single SBM. However, it turns out that the regret is in fact asymptotically competitive
with that of a single SBM, without the extraK factor. Specifically, we show that the to-
tal regret is in fact dominated solely by the regret of the SBM corresponding to the arm
with maximal utility. To achieve this, we assume that the SBM’s implement a strategy
with a certain robustness property that implies a bound not only on the expected regret,
but also on the tail of the regret distribution. More precisely, an inverse polynomial tail
distribution is necessary. Interestingly, the assumption is satisfied by the UCB algo-
rithm Auer et al. (2002) (as detailed in Lemma 2.2). Recall that x∗ ∈ X denotes an
arm with largest valuation µ(x), and that ∆x := µ(x∗)− µ(x) for all x ∈ X . Assume
∆x > 0 for all x 6= x∗.6

Definition 4.1. Let Tx be the number of times a (sub-optimal) arm x ∈ X is played
when running the policy T rounds. A MAB policy is said to be α-robust when it has the
following property: for all s ≥ 4α∆−2x ln(T), it holds that Pr[Tx > s] < 2

α (s/2)−α.

Recall that as discussed in Section 2.1, in Auer et al.’s (2002) classic UCB policy
this property can be achieved by slightly enlarging the confidence region.

Theorem 4.2. The total expected regret of MultiSBM (Algorithm 3) in the UBDB
game is

O
(
Hα lnT +Hα

(
K lnK+K ln lnT −

∑
x 6=x∗

ln ∆x

))
,

assuming the policy of the SBMs defined in Line 1 isα-robust forα = max(3, ln(K)/ ln ln(T)).
The robustness can be ensured by choosing the UCB policy (Algorithm 1) for the SBM
with parameter α.

Note that achieving (α = 3)-robustness requires implementing a variant of UCB
with a slight modification of the confidence interval parameter in each SBM. Therefore,

6If this is not the case, our statements still hold, yet the proof becomes slightly more technical. As there
is no real additional complication to the problem under this setting, we ignore this case.

9

if the horizon T is large enough so that ln lnT > (lnK)/3, then the total regret is
comparable to that of UCB in the standard MAB game.

The proof of the theorem is deferred to Appendix C. The main idea behind the
proof is showing that a certain “positive feedback loop” emerges: if the expected regret
incurred by the right arm at some time t is low, then there is a higher chance that x∗

will be played as the left arm at time t+ 1. Conversely, if any fixed arm (in particular,
x∗) is played very often as the left arm, then the expected regret incurred by the right
arm decreases rapidly.

5 A Heuristic Approach
In this section we describe a heuristic called Sparring for playing UBDB, which
shows extremely good performance in our experiments. Unfortunately, as of yet we
were unable to prove performance bounds that explain its empirical performance. Sparring
uses two SBMs, corresponding to left and right. In each round the pair of arms is cho-
sen according to the strategies of the two corresponding SBMs. The SBM correspond-
ing to the chosen arm receives a feedback of 1 while the other receives 0. The formal
algorithm is described in Algorithm 4.

The intuition for this idea comes from analysis of an adversarial version of UDBD,
in which it can be easily shown that the resulting expected regret of Sparring is at
most a constant times the regret of the two SBMs which emulate an algorithm for adver-
sarial MAB. (We omit the exact discussion and analysis for the adversarial counterpart
of UDBD in this extended abstract.) We conjecture that the regret of Sparring is
asymptotically bounded by the combined regret of the algorithms hiding in the SBM’s,
with (possibly) a small overhead. Proving this conjecture is especially interesting for
settings in whichX is infinite and a MAB algorithm with polylogarithmic regret exists.
Indeed, previous literature based on tournament elimination strategies does not apply
to infinite X , and Doubler presented earlier is probably suboptimal due to the extra
log-factor it incurs.

Proving the conjecture appears to be tricky due to the fact that the left (resp. right)
SBM does not see a stochastic environment, because its feedback depends on non-
stochastic choices made by the right (resp. left) SBM. Perhaps there exist bad settings
where both strategies would be mutually ‘stuck’ in some sub-optimal state. We leave
the analysis of this approach as an interesting problem for future research. Our experi-
ments will nevertheless include Sparring.

6 Notes
Lower Bound: Our results contain upper bounds for the regret of the dueling bandit
problem. We note that a matching lower bound, up to logarithmic terms can be shown
via a simple reduction to the MAB problem. This reduction is the reverse of the others
presented here: simulate a SBM by using a UBDB solver. It is an easy exercise to
obtain such a reduction whose regret w.r.t. the MAB problem is at most twice the

10

Algorithm 4 (Sparring): Reduction to two SBMs.
1: SL, SR ← two new SBMs over X
2: reset(SL), reset(SR), t← 1
3: while true do
4: xt ← advance(SL); yt ← advance(SR)
5: play (xt, yt), observe choice bt ∈ {0, 1}
6: feedback(SL,1bt=0); feedback(SR,1bt=1)
7: t← t+ 1
8: end while

regret of the dueling bandit problem. It follows that the same lower bounds of the
classic MAB problem apply to the UBDB problem.

Adversarial Setting: One may also consider an adversarial setting for the UBDB
problem. Here, utilities of the arms that are assumed to be constant in the stochastic
case are assumed to change each round in some arbitrary way. We do not elaborate
on this setting due to space constraints but mention that (a) a lower bound of

√
KT

matching that of the MAB problem is valid in the UDBD setting, and (b) the Sparring
algorithm, when using SBM solvers for the adversarial setting, can be shown to obtain
the same regret bounds of said SBM solvers.

7 Experiments
We now present several experiments comparing our algorithms with baselines consist-
ing of the state-of-the-art INTERLEAVED FILTER (IF) Yue et al. (2012) and BEAT THE
MEAN BANDIT (BTMB) Yue & Joachims (2011). Our experiments are exhaustive, as
we include scenarios for which no bounds were derived (e.g. nonlinear link functions),
as well as the much more general scenario in which BTMB was analyzed Yue &
Joachims (2011).

Henceforth, the set X of arms is {A,B,C,D,E, F}. For applications such as the
interleaving search engines Chapelle et al. (2012), 6 arms is realistic. We considered 5
choices of the expected value function µ(·) and 3 link functions78.

linear φ(x, y) = (1 + x− y)/2
natural φ(x, y) = x/(x+ y)
logit φ(x, y) = (1 + exp{y − x})−1

Name µ(A) µ(B) µ(C) µ(D) µ(E) µ(F)

1good 0.8 0.2 0.2 0.2 0.2 0.2
2good 0.8 0.7 0.2 0.2 0.2 0.2
3good 0.8 0.7 0.7 0.2 0.2 0.2
arith 0.8 0.7 0.575 0.45 0.325 0.2
geom 0.8 0.7 0.512 0.374 0.274 0.2

7To be precise, the actual expected utility vector µ was a random permutation of the one given in the
table. This was done to prevent initialization bias arising from the specific implementation of the algorithms.

8Note that in row ’arith’, µ(2)..µ(6) form an arithmetic progression, and in row ’geom’ they form a
geometric progression.

11

For each 15 combinations of arm values and link function we ran all 5 algorithms
IF, BTMB, MultiSBM, Doubler, and Sparring with random inputs spanning
a time horizon of up to 32000.

We also set out to test our algorithms in a scenario defined in Yue & Joachims
(2011). We refer to this setting as YJ. Unlike our setting, where choice probabilities are
derived from (random) latent utilities together with a link function, in YJ an underlying
unknown fixed matrix (Pxy) is assumed, where Pxy is the probability of arm x chosen
given the pair (x, y). The matrix satisfies very mild constraints. Following Yue &
Joachims (2011), define εxy = (Pxy − Pyx)/2. The main constraint is, for some
unknown total order � over X , the imposition x � y ⇐⇒ ε(x, y) > 0. The optimal
arm x∗ is maximal in the total order. The regret incurred by playing the pair (xt, yt) at
time t is 1

2 (εx∗xt
+ εx∗yt).

The BTMB algorithm Yue & Joachims (2011) proposed for YJ is, roughly speak-
ing, a tournament elimination scheme, in which a working set of candidate arms is
maintained. Arms are removed from the set whenever there is high certainty about
their suboptimality. Although the YJ setting is more general than ours, our algorithms
can be executed without any modification, giving rise to an interesting comparison with
BTMB. For this comparison, we shall use the same matrix (εxy)x,y∈X as in Yue &
Joachims (2011), which was empirically estimated from an operational search engine.

A B C D E F
A 0 0.05 0.05 0.04 0.11 0.11
B −0.05 0 0.05 0.06 0.08 0.10
C −0.05 −0.05 0 0.04 0.01 0.06
D −0.04 −0.04 −0.04 0 0.04 0
E −0.11 −0.08 −0.01 −0.04 0 0.01
F −0.11 −0.10 −0.06 0 −0.01 0

(Note that x∗ = A � B � C � D � E � F .)

Experiment Results and Analysis Figure 1 contains the expected regrets of these
described scenarios as a function of the log (to the base 2) of the time, averaged over
400 executions, with one standard deviation confidence bars. The experiments reveal
some interesting results. First, the heuristic approach is superior to all others in all of
the settings. Second, among the other algorithms, the top two are the algorithms IF
and MultiSBM, where MultiSBM is superior in a wide variety of scenarios.

8 Future work
We dealt with choice in sets of size 2. What happens in cases where the player chooses
from larger sets? We also analyzed only the linear choice function. See Appendix D
for an extension of the results in Section 4 to other link functions.

Both algorithms Doubler and MultiSBM treated the left and right sides asym-
metrically. This did not allow us to consider distinct expected valuation functions for
the left and right positions. 9 Algorithm Sparring is symmetric, further motivating
the question of proving its performance guarantees.

9Such a case is actually motivated in a setting where, say, the perceived user valuation of items appearing
lower in the list are lower, giving rise to bias toward items appearing at the top.

12

10 11 12 13 14 15
0

500

1000

1500

logit/2good

10 11 12 13 14 15
0

500

1000

1500

logit/3good

10 11 12 13 14 15
0

500

1000

1500

logit/geom

10 11 12 13 14 15
0

500

1000

1500

2000

logit/1good

10 11 12 13 14 15
0

500

1000

1500

logit/arith

10 11 12 13 14 15
0

500

1000

natural/2good

10 11 12 13 14 15
0

500

1000

natural/3good

10 11 12 13 14 15
0

500

1000

natural/geom

10 11 12 13 14 15
0

200

400

600

800

natural/1good

10 11 12 13 14 15
0

500

1000

natural/arith

10 11 12 13 14 15
0

200

400

600

800

linear/2good

10 11 12 13 14 15
0

200

400

YJ

10 11 12 13 14 15
0

200

400

600

800

linear/3good

10 11 12 13 14 15
0

200

400

600

800

linear/geom

10 11 12 13 14 15
0

200

400

600

linear/1good

10 11 12 13 14 15
0

200

400

600

800

linear/arith

Doubler
IF
DoubleSBM
BTMB
MultiSBMSparring

Figure 1: Expected regret plots, averaged over 400 runs for each of the 16 scenarios, and 5
algorithms. The x-axis is the log to the base 2 of the time, and the y-axis is the regret, averaged
over 400 executions (with 1 standard deviation confidence bars).

Proving (or refuting) the conjecture in Section 5 regarding the regret of Sparring
is an interesting open problem. Much like our proof idea for the guarantee of MultiSBM,
there is clearly a positive feedback loop between the two SBM’s in Sparring: the

13

more often the left (resp. right) arm is played optimally, the right (resp. left) arm
would experience an environment which is closer to that of the standard MAB, and
would hence incur expected regret approximately that of the SBM it implements.

Acknowledgments
The authors thank anonymous reviewers for thorough and insightful reviews. This
research was funded in part by NSF Awards IIS-1217686 and IIS-1247696, a Marie
Curie Reintegration Grant PIRG07-GA-2010-268403, an Israel Science Foundation
grant 1271/33 and a Jacobs Technion-Cornell Innovation Institute grant.

References
Agarwal, Alekh, Dekel, Ofer, and Xiao, Lin. Optimal algorithms for online convex

optimization with multi-point bandit feedback. In COLT, pp. 28–40, 2010.

Ailon, Nir, Begleiter, Ron, and Ezra, Esther. Active learning using smooth relative
regret approximations with applications. Journal of Machine Learning Research -
Proceedings Track, 23:19.1–19.20, 2012.

Antos, András, Bartók, Gábor, Pál, Dávid, and Szepesvári, Csaba. Toward a classifica-
tion of finite partial-monitoring games. Theoretical Computer Science, 2012.

Auer, Peter, Cesa-Bianchi, Nicolò, and Fischer, Paul. Finite-time analysis of the mul-
tiarmed bandit problem. Mach. Learn., 47(2-3):235–256, May 2002.

Avner, Orly, Mannor, Shie, and Shamir, Ohad. Decoupling exploration and exploitation
in multi-armed bandits. In ICML, 2012.

Bartók, Gábor, Zolghadr, Navid, and Szepesvári, Csaba. An adaptive algorithm for
finite stochastic partial monitoring. arXiv preprint arXiv:1206.6487, 2012.

Chapelle, O., Joachims, T., Radlinski, F., and Yue, Yisong. Large-scale validation and
analysis of interleaved search evaluation. ACM Transactions on Information Systems
(TOIS), 30(1):6:1–6:41, 2012.

Dani, Varsha, Hayes, Thomas P., and Kakade, Sham M. Stochastic linear optimization
under bandit feedback. In COLT, pp. 355–366, 2008.

Feige, Uriel, Raghavan, Prabhakar, Peleg, David, and Upfal, Eli. Computing with noisy
information. SIAM J. Comput., 23(5):1001–1018, October 1994.

Freund, Yoav, Iyer, Raj D., Schapire, Robert E., and Singer, Yoram. An efficient boost-
ing algorithm for combining preferences. Journal of Machine Learning Research,
4:933–969, 2003.

Herbrich, R, Graepel, Thore, and Obermayer, Klaus. Large margin rank boundaries for
ordinal regression. Book chapter, Advances in Large Margin Classifiers, 2000.

14

Joachims, T., Granka, L., Pan, Bing, Hembrooke, H., Radlinski, F., and Gay, G. Evalu-
ating the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM Transactions on Information Systems (TOIS), 25(2), April 2007.

Karp, Richard M. and Kleinberg, Robert. Noisy binary search and its applications.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’07, pp. 881–890, 2007.

Mannor, Shie and Shamir, Ohad. From bandits to experts: On the value of side-
observations. In NIPS, pp. 684–692, 2011.

Piccolboni, Antonio and Schindelhauer, Christian. Discrete prediction games with arbi-
trary feedback and loss. In Computational Learning Theory, pp. 208–223. Springer,
2001.

Robbins, H. Some aspects of the sequential design of experiments. Bulletin of the
AMS, 58:527–535, 1952.

Train, Keneth. Discrete Choice Methods with Simulation. Cambridge University Press,
2009.

Yue, Yisong and Joachims, T. Interactively optimizing information retrieval systems
as a dueling bandits problem. In International Conference on Machine Learning
(ICML), pp. 151–159, 2009.

Yue, Yisong and Joachims, Thorsten. Beat the mean bandit. In ICML, pp. 241–248,
2011.

Yue, Yisong, Broder, Josef, Kleinberg, Robert, and Joachims, Thorsten. The k-armed
dueling bandits problem. J. Comput. Syst. Sci., 78(5):1538–1556, 2012.

A Robustness of the UCB algorithm
For completeness, we present a proof of robustness for the UCB algorithm, presented
as Algorithm 1 below. Note that we did not make an effort to bound the constants
in the proof. We start by presenting Chernoff’s inequality providing a tail bound for
estimations of variables contained in [0, 1].

Lemma A.1. Let Y1, . . . , Yt be i.i.d variables supported in [0, 1]. Then for any ε > 0
it holds that

Pr

[
1

t

t∑
i=1

Yi − E[Yi] > ε

]
≤ e−2tε

2

Recall that in our setting, there are K arms, each with an expected reward. For
convenience we assume the set of bandits X is the set {1, . . . ,K} and further assume
for the purpose of the analysis that arm 1 has the largest expected reward. We denote
by ∆i the difference between the reward of arm 1 and that of arm i.

15

Proof of Lemma 2.2. For convenience, define β = α + 2 where α is the robustness
parameter given as input to the algorithm. For i > 1, define

ui(t) = 2β ln(t)/∆2
i

If at time t, arm i where i > 1 (i.e. i is suboptimal) was chosen, one of the following
must be true

1. ρi(t) < ui(t)

2. µ̂i > µi +
√

β ln(t)
2ρi(t)

3. µ̂1 +
√

β ln(t)
2ρ1(t)

< µ1

Here, ρi(t), ρ1(t) denote the number of times arms i and 1 (the optimal arm) were
pulled up to time t. Indeed, if all 3 are false we have

µ̂1 +

√
β ln(t)

2ρ1(t)
≥ µ1 = µi + ∆i ≥

µi + 2

√
β ln(t)

2ρi(t)
≥ µ̂i +

√
β ln(t)

2ρi(t)

and the i’th arm cannot be chosen. Hence, denoting ρi(T) the number of times arm i
is queried in a total budget of T queries, we have

E[ρi(T)− ui(T)] ≤
T∑

t=ui(T)+1

Pr[(2) or (3)]

To bound the probability of event (2) occurring, we use Chernoff’s inequality (Lemma A.1)

Pr[(2)] ≤ Pr

[
∃ρi ∈ [t] : µ̂i > µi +

√
β ln(t)

2ρi

]
≤

t · t−β = t1−β .

The bound for event (3) is analogous. It follows that the probability of events (2) or
(3) occurring is bounded by 2t1−β and

E[ρi(T)− ui(T)] ≤
T∑

t=ui(T)+1

2t1−β ≤

2

β − 2

(
2β ln(T)∆−2i

)2−β
(A.1)

16

Proving the bound on the expected regret is now a matter of simple calculation

E[R] =
∑
i>1

E[∆i · ρi(T)] ≤

2
∑
i ∆i

β − 2
+
∑
i>1

2β ln(T)/∆i ≤
2K

β − 2
+ 2βH ln(T)

We proceed to prove the high probability bounds on the number of pulls of a sub-
optimal arm. Denote by ρsi (T) the number of times arm i was chosen starting from
the time point t ≥ s. Assuming s ≥ 2β ln(T)∆−2i , by the same arguments leading to
equation A.1 we have

E[ρsi (T)− ui(T)] ≤ 2

β − 2
s2−β

Assume that arm i was chosen at least s times for some

s ≥ 4(β + 2) ln(T)

∆2
i

it follows that ρs−ui(T)−1
i (T) ≥ ui(T) + 1. The probability of this happening is

bounded by Markov’s inequality by

Pr[ρi(T) ≥ s] ≤ Pr
[
ρ
s−ui(T)−1
i (T)− ui(T) ≥ 1

]
≤

E
[
ρ
s−ui(T)−1
i (T)− ui(T)

]
≤

2

β − 2
(s− ui(T)− 1)2−β ≤ 2

β − 2

(s
2

)2−β
The last inequality holds since

s ≥ 4(β + 2) ln(T)

∆2
i

≥ 2 +
4β ln(T)

∆2
i

= 2ui(T) + 2

B Proof of Theorem 3.1
Let B(T) denote the supremum of the expected regret of the SBM S (defined in line1
of Algorithm 2) after T steps, over all possible utility distributions of the arm set X .

Fix a phase i in the algorithm. The length Ti of the phase is exactly 2i. For all time
steps t inside the phase, the left bandit xt is drawn from some fixed distribution. Let µ′

denote the common expectation E[ut] = Ext [ut|xt] of the reward of the left arm in all
steps t in the phase. Now, the SBM S (defined in Line 1) is playing a standard MAB

17

game over the set X with binary rewards. Let bt denote the binary reward in the t’th
step (within the phase). By construction,

E[bt|vt, ut] =
vt − ut + 1

2
∈ [0, 1] . (B.1)

By conditional expectation, for all y ∈ X ,

E[bt|yt = y] =
µ(y)− µ′ + 1

2
∈ [0, 1] . (B.2)

Note that the arm with highest expected reward is y = x∗. By the definition of the
bound function B(T), the total expected regret (in the traditional MAB sense) of the
SBM S in the phase is at most B(Ti) = B(2i). This means, that

E

[∑
t

(
bt −

µ(x∗)− µ′ + 1

2

)]
≤ B(2i) ,

where the summation runs over t in the phase. But this clearly means, using (B.2), that

E

[∑
t

µ(yt)− µ(x∗)

2

]
≤ B(2i) .

But notice that E[vt] = EytE[vt|yt] = E[µ(yt)]. Hence,

E

[∑
t

vt − µ(x∗)

2

]
≤ B(2i) .

In words, this says that the expected contribution of the right arm to the regret (in the
UDBD game) in phase i is at mostB(2i). It remains to bound the expected contribution
to the regret of the left bandit in phase i, which is drawn by a distribution which assigns
to all x ∈ X a probability proportional to the frequency of x played as the right arm
in the previous phase.10 By the principle of conditional expectation, and due to the
linearity of the link function, the expected regret incurred by xt (in each step in the
phase) is exactly the average expected regret contributed by the right bandit in phase
i − 1, and hence at most B(2i−1)/2i−1. This means that the total expected regret
incurred by the left bandit in phase i is bounded by 2i(B(2i−1)/2i−1) = 2B(2i−1).
Concluding, for a time horizon of T uniquely decomposable as 2+4+8+ · · ·+2k+Z
for some integers k ≥ 1 and 0 ≤ Z ≤ 2k+1-1, the total expected regret is given by the
following function of T :

1/2 + 3B(2) + 3B(4) + · · ·+ 3B(2k) +B(Z) . (B.3)

The theorem claim is now obtained by simple analysis of (B.3).

10If X is infinite, to be precise we need to say that the distribution is also supported on the set of arms
played on the right side in the previous phase.

18

C Proof of Theorem 4.2
To follow the proof, it is important to understand that in MultiSBM (Algorithm 3),
exactly one SBM is advanced at each step in Line 6. This means that the internal
timer of each SBM may be (and usually is) strictly behind the iteration counter of the
algorithm, which is measured by the variable t. Denote by ρx(t) the total number of
times Sx was advanced after t iterations of the algorithm, for all x ∈ X .

We now assume that all coin tosses are fixed (obliviously) in advance. This allows
us to discuss the regret of the SBM Sx (line 1) after T ′ internal steps even if in practice
the value t for which ρx(t) = T ′ might be much larger than the total number of arm
pulls T , and in fact, may not even exist.

Notice that internally, Sx sees a world in which the reward is binary, and the ex-
pected reward for bandit y ∈ X is exactly (µ(y) − µ(x) + 1)/2 at each internal step.
This is because when Sx is advanced, the left bandit (in the UBDB game) is identically
x. It follows that in all SBMs, the suboptimalities are the same and are ∆y/2 for arm
y.

For x ∈ X and integer T ′ > 0, let

Rx(T ′) =
1

2

∑
t:ρx(t)≤T ′,xt=x

∆yt

In words, this is the contribution of the right bandit choices to the UBDB regret at all
times t for which the left bandit is chosen as x, and Sx’s internal counter has not sur-
passed T ′. The expression Rx(T ′) , by the last discussion, also measures the expected
internal regret seen by Sx after T ′ internal steps. Similarly, we define

Rxy(T ′) = #{t : ρx(t) ≤ T ′, xt = x, yt = y}∆y/2

This measures a part of Rx(T ′) for which the right bandit is y. We start with an
observation expressing the regret of the entire process as a function of the different
Rxy’s. It will be useful to define ρxy(T ′) = #{t : ρx(t) ≤ T ′, xt = x, yt = y}, so
that Rxy(T ′) = ρxy(T ′)∆y/2.

Observation C.1. For any T ≥ 1, the total regret R(T) of MultiSBM after T steps

satisfies
∣∣∣R(T)− 2

∑
x∈X

∑
y∈X Rxy(ρx(T))

∣∣∣ ≤ 0.5.

We conclude that in order to bound the expected regret R(T) it suffices to bound
the expressions E[Rxy(ρx(T))]. By using the upper bound of ρx(T) ≤ T , we get the
trivial bound for E[R(T)] of K times the expected regret of a single machine. The
main insight is to exploit the fact that typically, ρx(T) is order of lnT for suboptimal
x. We begin with the observation that for any fixed x, y ∈ X (x suboptimal), s ≥ 8α,

Pr[Rxy(T) ≥ (s lnT)/∆y]

= Pr[Rxy(T) ≥ ((s/2) lnT)/(∆y/2)]

= Pr[ρxy(T) ≥ ((s/2) lnT)/(∆y/2)2]

≤
(
(s/4) lnT)/(∆y/2)2

)−α ≤ (s lnT)−α (C.1)

19

This is immediate from the α-robustness of the SBM and the fact we choose α > 2.
For the same assumption on s and x, y and using the union bound,

Pr
[
∃p ∈ {0, . . . , dln lnT e} : Rxy

(
ee

p
)
≥ s · p/∆y

]
≤ 2s−α (C.2)

We now bound the quantity ρx(T) for any nonoptimal fixed x. Using the (trivial) fact
that all z ∈ X satisfy ρz(T) ≤ T , together with the fact that SBM Sx is advanced in
each iteration only if x was the right bandit in the previous one, we have that for all
suboptimal x,

Pr[ρx(T) ≥ (sK lnT)/∆2
x]

≤
∑
z∈X

Pr [Rzx(T) ≥ (s lnT)/∆x] ≤ K/(s lnT)α, (C.3)

where the rightmost inequality is by union bound and (C.1). Fix some x, y ∈ X (x
suboptimal). The last two inequalities give rise to a random variable Z defined as the
minimal scalar for which we have

∀T ′ ∈ [e, ee, ee
2

, . . . , ee
dln ln(T)e

],

ρx(T) ≤ (ZK lnT)/∆2
x, Rxy(T ′) ≤ (Z lnT ′)/∆y

By (C.2)-(C.3) we have that for all s ≥ 8α, Pr[Z ≥ s] ≤ 2s−α + K(s lnT)−α.
Also, conditioned on the event that {Z ≤ s} we have that Rxy(ρx(T)) ≤ Rsxy :=

s ·e · ln((sK lnT)/∆2
x)/∆y , which isO

(
s∆−1y (ln lnT + lnK + ln s+ ln(1/∆x))

)
.

Combining, E[Rxy(ρx(T))] is bounded above by:

R8α−1
xy +

∞∑
i=0

R8α+i
xy (2(8α+ i)−α +K((8α+ i) lnT)−α) .

For α = max{3, 2 + (lnK)/ ln lnT)}, it is easy to verify that the last expression
converges to O(R8α

xy), hence

E[Rxy(ρx(T))] = O
(
α∆−1y (ln lnT + lnK + ln(1/∆x))

)
.

Concluding, the total expected regret E[R] is at most 0.5+E[Rx∗+
∑
x,y∈X\{x∗}Rxy],

clearly proving the theorem.

D Extension to more General Models
Assume the setting of Section 4. In this section we assume for simplicity that for any t
and any choice of xt, yt, the utilities are deterministically ut = µ(xt), vt = µ(yt). In
Yue & Joachims (2011), the dueling bandit problem is presented where a more relaxed
assumption is made on the probabilities of the outcomes of duels. Each pair of arm
x, y is assigned a parameter ∆(x, y) such that the probability of x being chosen when
dueling with y is 0.5 + ∆(x, y). It is assumed that there exists some order � over the
arms and the ∆’s hold two properties.

20

• (Relaxed) Stochastic Transitivity: For some γ ≥ 1 and any pair x∗ � x � y we
have γ∆(x∗, y) ≥ max{∆(x∗, x),∆(x, y)}.

• (Relaxed) Stochastic Triangle Inequality: For some γ ≥ 1 and any pair x∗ �
x � y we have γ∆(x∗, y) ≤ ∆(x∗, x) + ∆(x, y).

We have analyzed MultiSBM (Algorithm 3) under the assumption that ∆(x, y) =
(µ(x)− µ(y))/2. It can be easliy verified that our proof holds for arbitrary ∆’s under
the following assumption:

• (Relaxed) Extended Stochastic Triangle Inequality. For some γ ≥ 1, and any pair
x, y (where it does not necessarily hold that x � y) it holds that γ∆(x∗, y) ≤
∆(x∗, x) + ∆(x, y).

This property is clearly held for ∆(x, y) = (µ(x) − µ(y))/2. However, it holds
for a wider family of ∆’s. For example, it holds for ∆(x, y) = µ(x)/(µ(x) + µ(y)),
assuming all µ’s are in the region [1/γ, 1]. The effect of γ to the regret is given in the
following theorem:

Theorem D.1. Assume the probability for the outcome of a duel is defined according
to ∆(x, y), where ∆ has the Relaxed Extended Stochastic Triangle Inequality with pa-
rameter γ. The total expected regret of MultiSBM in the UBDB game is asymptotic
to

γHα

K ln(K) +K ln ln(T) +
∑

x∈X\{x∗}

ln(1/∆x)

+

ln(T)Hα

assuming the invoked MAB policy is α-robust for α = max(3, ln(K)/ ln ln(T)).

Notice that γ does not enter the summand of ln(T), meaning that for large values
of T , the regret is unaffected by γ. We defer the proof of the theorem to the full version
of the paper.

E Proof of Observation 2.1
By definition,

E[Rchoice
t |(xt, yt)] = µ(x∗)− E[U choice

t |(xt, yt)] .

But now note that by the definition of the link function and of U choice
t ,

E[U choice
t |(xt, yt)] = φ(ut, vt)ut + φ(vt, ut)vt ≥

ut + vt
2

where we used the assumption that for u > v, φ(u, v) > 1/2. Now notice that the
expression on the right is exactly E[Uav|(xt, yt)]. Hence,

E[Rchoice
t |(xt, yt)] ≤ µ(x∗)− E[Uav

t |(xt, yt)] = E[Rav
t] .

21

	1 Introduction
	2 Definitions
	2.1 Classic Stochastic MAB: A Short Review

	3 UBDB Strategy for Large or Structured X
	4 UBDB Strategy for Unstructured X
	5 A Heuristic Approach
	6 Notes
	7 Experiments
	8 Future work
	A Robustness of the UCB algorithm
	B Proof of Theorem 3.1
	C Proof of Theorem 4.2
	D Extension to more General Models
	E Proof of Observation 2.1

