
ar
X

iv
:1

20
5.

08
20

v1
 [

cs
.N

I]
 3

 M
ay

 2
01

2

DNS-based Ingress Load Balancing:
An Experimental Evaluation

Partha Kanuparthy†, Warren Matthews‡, Constantine Dovrolis†
† Georgia Institute of Technology ‡ JANET

Abstract
Multihomed services can load-balance their incoming
connection requests using DNS, resolving the name of
the server with different addresses depending on the link
load that corresponds to each address. Previous work
has studied a number of problems with this approach,
e.g., due to Time-to-Live duration violations and client
proximity to local DNS servers. In this paper, we exper-
imentally evaluate a DNS-based ingress traffic engineer-
ing system that we deployed at Georgia Tech. Our ob-
jective is to understand whether simple and robust load
balancing algorithms can be accurate in practice, despite
aforementioned problems with DNS-based load balanc-
ing methods. In particular, we examine the impact of var-
ious system parameters and of the main workload char-
acteristics. We show that a window-based measurement
scheme can be fairly accurate in practice, as long as its
window duration has been appropriately configured.

1 Introduction

As cloud services and content delivery become increas-
ingly ubiquitous, multihoming is turning to be an integral
part of network infrastructure, to distribute load and for
failover. A recent study [4], for example, found that the
average AS degree increased by one link per AS over the
last 12 years.

Ingress Traffic Engineering (ITE)aims to select an in-
coming link among a set of possible links for the com-
munication between a multihomed data center (or server
farm) and its client population. The primary objective of
ITE is to load-balance the incoming traffic to (and con-
sequently, the outgoing traffic from) the data center. A
secondary objective is to choose a better path (e.g., min-
imum delay or maximum available bandwidth) for each
client. Typically, however, content providers are primar-
ily interested in avoiding congestion in their own access
links, and so the load-balancing objective is their primary
concern.

Networks today employ two common approaches to
do ITE. The first approach relies on BGP and selective
prefix advertisements [7, 12]. This approach can balance
load at the level of IP address blocks, not client networks,
it creates BGP churn at the Internet core, and it may be
subject to BGP route dampening and convergence de-
lays. The second approach uses the DNS infrastructure
to dynamically select one ofk IP addresses to resolve the
server’s name, wherek is the number of incoming links.
The DNS-based solution is becoming increasingly pop-
ular, since it can balance the server’s load at the granu-
larity of individual DNS requests, and it does not require
the content provider to use BGP.

The most commonly deployed scenario of DNS-based
ITE is the DNS-NAT architecture shown in Figure 1.
Consider a multihomed networkN that uses IP addresses
from two ISPsX andY. It is easy to control the assign-
ment of outgoing connections (initiated from the data
center servers) to egress links. To control the egress link
of traffic in client-initiated connections, however, is more
challenging. One way to do so it is to rely on NATs and
DNS, as follows. A serverSin N is statically NATed with
two IP addressesSX andSY, from X andY respectively.
Clients requesting content from serverS first resolve its
hostname, and then establish a TCP connection toS. Net-
work N runs an authoritative DNS server for the domain
name ofS, which resolves each incoming DNS request
from a clientLocal-DNS(LDNS) server with eitherSX

or SY. Thus, traffic between clients and the data center
is routed on a per-LDNS basis through ISPsX or Y. Of
course the same approach can be followed in the case of
more than two upstream ISPs.

The ITE method presents some hard challenges. First,
the traffic that follows a DNS name resolution can con-
sist of multiple TCP connections, due to DNS caching
at the client. Second, multiple client sessions can follow
the same LDNS request, due to caching at LDNS servers.
Consequently, at DNS resolution time, we do not know
the magnitude or duration of the traffic that follows each

1

http://arxiv.org/abs/1205.0820v1

Internet Client networks

LDNS

DNS
Server farm

router/
Border

NAT

Data center N

ISP X

ISP Y

XS

YS

ISP K LDNS

...

Figure 1: The DNS-NAT ingress traffic engineering architecture.

DNS request. Further, that traffic cannot be partitioned
between different upstream ISPs. Third, TCP can cause
significant variations in the throughput of the incoming
load, making it harder to predict the incoming traffic on
each interface. Fourth, there can be a significant delay
between a DNS request (and the associated load balanc-
ing decision) and the arrival of the actual traffic that cor-
responds to that DNS request.

Previous work has studied a number of issues with
DNS-based ITE approaches. First, short advertised DNS
Time-To-Live (TTL) durations are not always honored
by remote DNS servers or clients [11]. Second, it is not
possible to migrate an ongoing TCP connection from one
link (i.e., server address) to another. Third, clients are not
always near their LDNS servers, which can affect accu-
racy of ITE methods that attempt to select the best path
for each client [8].

Theoretical studies have shown the effectiveness of
randomized load balancing [10], and issues with stale
measurements [9]. It is known that prior information
about incoming jobs can help [3, 6]. In ITE, however,
it is not always feasible to predict the arrivals or size of
client DNS requests. In addition, empirical studies of
ITE that compliment our work include [2, 5, 1].

In this paper, we evaluate a DNS-based ingress traffic
engineering system that we deployed at Georgia Tech.
Our objective is to understand whether a simple but ro-
bust load balancing algorithm can be accurate in prac-
tice, despite all known problems with DNS-based load
balancing methods. We also examine the impact of the
measurement window duration on load balancing accu-
racy.

The rest of the paper is organized as follows. Sec-
tion 3 describes our ITE prototype and workload. Sec-
tion 4 shows experimental results for the impact of key
system and workload characteristics on load balancing
accuracy. In Section 5, we analyze the impact of window
duration on load balancing using a history-based mea-
surement algorithm.

2 Workload Characteristics of a Content
Provider

In this section, we present measurements from the
GTLIB content distribution service at Georgia Tech.
This service is provided by four servers whose hostname,
www.gtlib.gatech.edu, is resolved in a round-robin
fashion by two authoritative DNS servers. We have col-
lected full Netflow traces from the Georgia Tech campus
border router. In parallel, we run tcpdump at the author-
itative DNS servers of the previous site. The measure-
ments were performed for a duration of 24 hours starting
on 10th April 2008 at 9pm. We analyzed the collected
traces (the capture clocks were kept synchronized via
NTP) to first understand whether remote LDNS servers
honor the advertised DNS TTL of 8 hours, and second,
to characterize the traffic workload in terms of bytes per
client and clients per LDNS.

How many LDNS servers honor the advertised
TTL? We first look at the distribution of the mini-
mum inter-arrivals from remote LDNS servers. The
A records for www.gtlib.gatech.edu pointed to
128.61.111.[9-12], and the advertised TTL was 8
hours. There were about 46,400 resolutions of type A.
Figure 2(a) shows the distribution of minimum inter-
arrival times for each LDNS server that contacted our
authoritative servers. The figure shows that for around
60% of the remote LDNS servers, we received requests
at most once per 8 hours. We can say that these LDNS
servers either follow the advertised TTL and/or have a
lower client resolution request rate than one per 8 hours.
For the remaining 40% of the LDNS servers, we expect
that they either use a TTL of less than 8 hours, or that
they do not do caching. In other words, these LDNS
servers violated the advertised TTL of 8 hours. More-
over, about 10% of them have a very short minimum
inter-arrival period, which implies that they may not be
doing any caching.

How many clients correspond to each LDNS
server? The challenge in this measurement is how to

2

www.gtlib.gatech.edu
www.gtlib.gatech.edu
128.61.111.[9-12]

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum LDNS request inter−arrival (s)

C
D

F

CDF of Inter−arrivals
Advertised TTL

(a) Request inter-arrivals from same LDNS

10
0

10
5

10
10

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Bytes per client

C
C

D
F

Data
Fit: Pareto; shape 1.25 scale 365844
Fit: lognormal; mean 12.70 std 2.53

(b) Bytes per client

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Clients per LDNS

C
C

D
F

Data
Fit: lognormal; mean 0.67 std 0.83
Fit: Pareto; shape 0.65 scale 0.9

(c) Clients per LDNS

Figure 2: Workload characteristics from GTLIB content distribution service.

associate an LDNS request with all subsequent arriving
connections from clients that have used that LDNS re-
quest to resolve the server’s name. We use a simple ap-
proach to do this correlation, based on the hypothesis
that an LDNS server and its associated clients belong to
the same Autonomous System, and thus their addresses
would both have the same BGP AS-Origin attribute (even
though they often donot belong to the same IP address
prefix). First, for each client request from an address A,
we find earlier DNS requests from LDNS servers that be-
long to the same Autonomous System that advertises ad-
dress A. If there are no such LDNS servers, or if there are
multiple such servers, we ignore that client request. Oth-
erwise, we associate that client request with the most re-
cent DNS request from the corresponding LDNS server.
Note that we ignore clients which resolved the GTLIB
hostname before the start of our 24-hour dataset. We also
ignore clients that round-robin between DNS servers in
their resolver configurations. Most OSes either do not
support this feature or disable it by default. Using the
previous approach, we found that we can associate 92%
of the client sessions with an LDNS entry from the same
origin-AS with the client. In total, we identified 2864
unique LDNS servers that we could associate with spe-
cific client requests. Figure 2(c) shows the distribution of
the number of clients using a given LDNS. We also show
regression curves for Pareto and lognormal distributions.
Note that the Pareto distribution is a better fit, showing
that the number of clients that correspond to each LDNS
is highly skewed.

How many bytes were received by each client? Fig-
ure 2(b) shows the distribution of bytes that the GTLIB
servers sent/received from each unique client address in
the course of the 24-hour trace. Note that the lognormal
distribution is a better fit to the measured data.

We use the previous GTLIB observations to emulate

realistic workload in the experimental evaluation of a
DNS-based ITE system, described in the next section.

3 System Implementation and Deployment

In this section, we describe our DNS-ITE prototype. The
Georgia Tech campus network has several commercial
and research providers. We multihome our server us-
ing two IP addresses which are advertised to the Internet
through Qwest, Cogent, and Internet2. The server’s host-
name is dynamically resolved by our DNS server to one
of the two addresses.

Load-balancing Algorithms: We perform load bal-
ancing using two algorithms: (1) round-robin (RR) and
(2) measurement-based (MB). The RR scheme selects
the server’s IP address in a round-robin fashion. The MB
algorithm uses recent history of ingress and egress traf-
fic at the interfaces of our server to make a load-based
decision about the next name resolution. Our goal is
to understand how simple round-robin and history-based
schemes work in practice.

Implementation: Our ITE system consists of two
processes running on the same host, the DNS pro-
cess and a monitoring process. The DNS process is a
non-blocking and concurrent, non-recursive authoritative
nameserver, which serves LDNS resolution requests for
our domain. The DNS process communicates with the
monitoring process to get traffic measurements. This
communication is done using shared memory; we have
also tested an RPC-based mechanism to run the two pro-
cesses on different hosts. The monitoring process mea-
sures aggregate traffic utilization at the two interfaces of
the server. We measure the load on each interface using a
sliding windowof lengthW=nwseconds, which consists
of n small windows of lengthw. The sliding window
moves in steps ofw seconds. In our implementation,

3

we setw = 100ms. Our prototype can be extended to
other traffic measurement methods such as Netflow, and
to multiple content servers.

Server characteristics: We run an Apache server
on Linux serving content of client requested size over
HTTP. The server, DNS and monitoring processes run on
a 2GHz hyper threading-enabled Xeon with 1GB phys-
ical memory. At peak experiment loads of 5-10 Mbps
traffic, the CPU usage does not exceed 20%.

Workload: We emulate a realistic workload by using
40 clients on PlanetLab and 6 clients on RON networks.
Some of our workload parameters are drawn from ob-
servations of Georgia Tech’s GTLIB content distribution
mirror. We choose these nodes such that they use dif-
ferent LDNS servers (i.e. have disjoint resolver configu-
rations). Further, we pick LDNS servers that follow the
advertised TTL (so that, for example, we can emulate
LDNS servers using a minimum TTL). The duration of
each experiment is 10 minutes.

The traffic model that we emulate is described next.
First, 40% of LDNS servers do not follow the nominal
TTL of 15 seconds - we advertise a 15s TTL to those
servers. For these LDNS servers, we advertise a TTL that
is uniformly distributed in[5,600]s. We always advertise
the same TTL to a given LDNS server. The fraction of
TTL violations is based on DNS logs from GTLIB. Sec-
ond, clients follow a closed-loop (orinteractive) arrival
model, in which they download a file over TCP, sleep for
some time, and then repeat this process. Unless stated
otherwise, the sleep times are exponentially distributed
with a mean of 35 seconds. Third, clients download log-
normally distributed file sizes with a mean of 225KB,
based on a 24-hour Netflow data from GTLIB. However,
we had to truncate the size distribution to 625KB to avoid
exceeding PlanetLab byte limits that could trigger rate-
limiting. Fourth, there can be many clients behind an
LDNS. We refer to these clients ashidden clients. We
emulate them by spawning multiple simultaneous pro-
cesses on the same client host. The number of hidden
clients on each host is drawn from the uniform distri-
bution [1,5]. Finally, the emulated clients have diverse
path characteristics (RTT and available bandwidth) to
our server, as it would also happen in a real content
provider.

4 DNS-ITE Performance

The accuracy of any load balancing scheme depends on
the job size granularity at which we can “route” jobs to
servers. In the context of DNS-ITE, this granularity is
the the number of bytes that correspond to each LDNS
request. If each LDNS request was followed by only few
bytes worth of load, we would be able to achieve much
more accurate load balancing than if each LDNS request

was followed by a large and long file transfer. In this sec-
tion, we start with a model that describes the factors on
which the DNS-ITE load balancing granularity depends
on. We then empirically evaluate how the accuracy of a
round-robin load balancer depends on these parameters.

Considern clients behind each LDNS server. Sup-
pose each client downloadss bytes from the server in
each connection. Let the arrival rate of connections per
client ber, and the arrival rate of DNS requests from each
LDNS beλ . If a remote LDNS server uses caching, the
TTL that it follows isT seconds. Then,

λ =

{

nr if LDNS is non-caching

min{nr, 1
T } LDNS caches with TTLT

The traffic rate that corresponds to an LDNS server is
given byR= nrs (bps). The granularity in which we can
balance the arriving traffic is:

R
λ

=

{

s if i is non-caching, ornr < 1
T

nrsT otherwise
(1)

Next, we quantify the effect of the parameters that con-
trol this ratioR/λ on the load balancing accuracy that we
can achieve with a simple RR algorithm.

The error metric: We quantify the load balancing
accuracy in terms of therelative differencebetween the
utilization of the two links. measured in anaveraging
timescaleof I seconds. More precisely, we measure the
traffic utilization (in bps)UI ,1(t) andUI ,2(t) of the two
links at our server in a sliding window of lengthI that
starts at timet. Under perfect load balancing conditions,
the load on each link during the interval(t, t + I) should
be[UI ,1(t)+UI ,2(t)]/2. The load balancing errorε is de-
fined as:

εI (t) =
|UI ,1(t)−UI ,2(t)|
UI ,1(t)+UI ,2(t)

We re-computeεI (t) every one second.
Figure 3 shows the impact of the sliding window

lengthI on the median errorεI (t), for one of our experi-
ments. As expected, the load balancing error is higher as
we decreaseI , as there are fewer arriving connection re-
quests in shorter intervals. Also note that the error metric
tends to stabilize whenI is larger than about 15 seconds.
This shows that the RR load balancing algorithm is not
able to eliminate the relative error, even when we use a
significantly long (15s) averaging timescale. In the rest
of this paper, we useI=20s.

Aggregate load: Our goal in this experiment is to ex-
amine the impact of the aggregate traffic load on the rel-
ative error. We do so by varying the number of deployed
LDNS servers (and hence the number of active clients)
from 10 to 45. Figure 5 shows the distribution of the
relative error. Note that the error decreases as the aggre-
gate utilization increases. As we decrease the number of

4

0 10 20 30 40 50 60
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Analysis interval size (s)

M
ed

ia
n

er
ro

r

Figure 3: Variation of median error with averaging
timescaleI .

LDNS servers and the associated clients, the aggregate
load drops, decreasing the frequency between arriving
DNS requests. Thus, the load balancer has fewer oppor-
tunities to distribute the arriving load between the two
links.

File size distribution: Here, we first examine the ef-
fect of the requested file size and second, the effect of the
significant variability in the lognormal file size distribu-
tion compared to the case of constant file sizes. In or-
der to keep the aggregate load fixed, we adjust the mean
idle period between requests from each client. The top
part of Figure 4 shows effect of increasing the file size
on the error distribution, when clients request fixed-sized
files. Note that as we increase the file size from 30KB to
625KB, the errors increase. This is expected, because
with smaller flows, our DNS server can take more fre-
quent load balancing decisions, amortizing the load be-
tween the two servers at a finer granularity.

The bottom part of Figure 4 shows the differences be-
tween fixed-size transfers and lognormally-sized trans-
fers. We use a truncation size of 1MB for the latter.
We see that the errors increase when the content size is
heavy-tailed. The main reason is that the round-robin
scheduler does not consider the current load on each link.
Thus, in a heterogeneous workload with transfers of dif-
ferent sizes, it can happen that one link receives several
long transfers while another receives mostly short trans-
fers, causing periods of significant imbalance.

Advertised TTL: Next, we illustrate the effect of ad-
vertised TTL on the load balancing accuracy. Equation 1
shows that accuracy depends on the TTLT that is adver-

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Error (I=20s)

30KB fixed
30KB lognormal

30KB fixed
225KB fixed
625KB fixed

Figure 4: Effect of file size (RR).

tised to LDNS servers, as long as the request rate from
each LDNSrn is larger than 1/T. When the request rate
is less than that, we expect that the load balancing error
will not depend on TTL.

We examined the impact of the advertised TTL on the
median of the relative errorε as follows. The client re-
quest rater is set to once per 35s. Hence, the request
inter-arrivalrn from an LDNS varies between 7s and 35s,
depending on the number of clients per LDNS. Figure 6
shows the median error and Wilcoxon-based 99% confi-
dence intervals for different advertised TTLs. Consistent
with Equation 1, when the time period between succes-
sive DNS requests from the same LDNS is less than the
advertised TTL, the error increases with the TTL (TTL
values 1, 5, and 15 seconds). For the two larger TTL val-
ues, the load balancing error does not increase with the
TTL because the client requests arrive too infrequently
to be affected by DNS caching.

Hidden clients: We also investigate the effect of the
number of clients per LDNS. We keep the number of
clients constant across all LDNS servers. In order to keep
the aggregate load fixed, we adjust the number of active
LDNS servers. We also keep the client idle period at 14s
(mean) so that in the case of a single client per LDNS,
the client request rate is higher than the advertised TTL
(15s).

Figure 7 shows the load balancing error when we in-
crease the number of clients per LDNS from one to five.
We see that the case for five clients per LDNS shows a
clear increase in the load balancing error compared to the
case of one and three hidden clients. Hidden clients in-
crease load balancing errors because the amount of traffic

5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (I=20s)

C
D

F

10 clients
20 clients
30 clients
45 clients

Figure 5: Effect of aggregate load (RR).

that corresponds to each LDNS request grows with their
count.

5 Measurement-based DNS-ITE

In this section, we evaluate the performance of a
measurement-based load balancing scheme, and exam-
ine the impact of the measurement history on its accu-
racy. Intuitively, the worst-case scenario for a round-
robin scheme is when requests for file sizes arrive in
{large, small} pairs. A measurement-based scheme can
alleviate such problems by routing clients based on the
current link loads.

In the measurement-based (MB) scheme that we con-
sider in this paper, we measure the incoming and out-
going load on each link of our content server using a
sliding-window of durationW. On a new LDNS request,
we compare the latest utilization measurements of the
two links and advertise the interface with the minimum
load.

Comparison between RR and MB: We compare
MB with RR load balancing using the same workload
model we used in the previous section. Figure 8 shows
the distribution of load balancing errors in theI = 20s
timescale with different window sizes, and with the RR
scheme. We see that a large window ofW = 30s per-
forms worse than the RR scheme, while a small window
of W = 100ms performs marginally better than RR. A
window size ofW = 10s is significantly better than RR.
It is clear that the parameterW has a significant impact
on the accuracy of MB, and so we need to further under-
stand why.

0 20 40 60 80 100 120
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Advertised TTL (s)

M
ed

ia
n

er
ro

r
(I

=
20

s)

Figure 6: Effect of advertised TTL (RR).

An important issue in any load balancing scheme that
relies on historical data is whether those past measure-
ments arestale, meaning that they no longer reflect the
current loads [9]. Intuitively, a larger value ofW is more
prone to such errors than a shorterW. However, the mag-
nitude ofW also controls thevarianceof measurements.
A shorterW introduces more noisy measurements, mak-
ing it harder to accurately estimate the load on each link.
An appropriate value ofW needs to consider carefully
the staleness-vs-variance trade-off based on the dynam-
ics and burstiness of the underlying traffic.

Staleness-vs-variance trade-off: To illustrate the ef-
fects of measurement staleness and variance on load
balancing accuracy we start with an experiment using
two simple, synthetic traffic models. In the first model
(CBR), each flow has a constant size and duration and the
packets are transmitted periodically. Here, the only vari-
ability in the aggregate traffic is due to flow start/finish
events. In the second model, the traffic is generated from
an aggregate of Pareto renewal processes (inter-packet
gaps), causing significant variability in the packet inter-
arrivals. There are no flow start/finish events, however,
which means that there are no rapid changes in the arriv-
ing traffic rate.

Figure 9 shows the load balancing error distribution
for the two models, for differentWs. For CBR, a smaller
value ofW (0.1s) performs best. The reason is that in
CBR the measurement variance is minimal (each flow
consists of periodic packet arrivals), and even a very
short measurement window will suffice to estimate the
load of each link accurately. A largerW, say 10s, is
detrimental because it is subject to stale measurements

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (I=20s)

C
D

F

1 client
3 clients
5 clients

Figure 7: Effect of hidden clients (RR).

(a different number of active flows than currently active).
With the Pareto model, on the other hand, we get lower
errors whenW=1s compared toW=0.1s. The reason is
that this traffic is more bursty, and so we need a longer
time period in order to reliably know which link is more
heavily loaded.

There is no “optimal” value ofW that is independent
of the statistical characteristics of the underlying traf-
fic. The general guideline that we can provide is that
W should be as short as possible (to avoid the issue of
staleness) subject to the constraint that the measurement
variance is sufficiently low to reliably show which link
has the minimum load.Note that the objective is not how
to accurately estimate the load on each link. Instead, we
are simply interested in identifying the link with the min-
imum load.

What is an appropriate value ofW for the TCP-based
workload that we used in our experiments? To answer
this question, we simulated the MB load balancer on
packet traces from theW = 10s experiment. Specifically,
we partitioned the experiment duration into 100ms inter-
vals, identifying the load from different LDNS servers
in each interval. We then used a (hypothetical) window
sizeW to make MB load balancing decisions for any new
DNS requests in that interval, and measured the result-
ing load balancing errors atI = 20s. Figure 10 shows the
median error observed withW. We see that a measure-
ment windowW in [5,15]s gives the lowest errors. With
smaller window sizes we see the negative effects of vari-
ance, while with larger windows we observe the negative
effects of staleness. It is interesting that there is a wide
range ofW in which the load balancing accuracy is al-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (I=20s)

C
D

F

RR
Window 30s
Window 10s
Window 0.1s

Figure 8: RR versus MB load balancing.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (I=20s)

C
D

F

CBR W=1s
CBR W=0.1s
Pareto W=1s
Pareto W=0.1s
CBR W=10s
Pareto W=10s

Figure 9: Staleness-vs-variance trade-off.

most constant, implying that the selection ofW may not
need to be fine-tuned in practice.

Limitations of MB DNS-ITE: The MB scheme can
improve load balancing accuracy compared to RR, but
it can still suffer from an intrinsic problem with DNS-
based ITE: there can be a significant delay between a
DNS request (and the associated load balancing deci-
sion) and the arrival of the actual traffic that corresponds
to that DNS request. To illustrate this effect, consider the
following simplified model of DNS-ITE.

Suppose that we receive DNS requests at a constant
rate λ . Traffic associated with each DNS request can

7

0 5 10 15 20
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Window size W (s)

M
ed

ia
n

er
ro

r
ac

ro
ss

 2
0s

 in
te

rv
al

s

Figure 10: Effect ofW on MB accuracy.

originate from multiple TCP connections and from mul-
tiple clients. Further, there can be a significant delay be-
tween a load balancing decision and the arrival of the
actual traffic load. For a single connection, this delay
includes the DNS response, the TCP connection estab-
lishment phase, or the slow-start phase. Letδ be the
delay between a DNS request and the time that the as-
sociated traffic arrives. During that period, we can re-
ceiveδλ other DNS requests, which will be routed with-
out considering the load that has been already commit-
ted (but not arrived) to each link. Ifδ > 1/λ , i.e. if δ
is significant compared to the inter-arrival time of DNS
requests, the MB scheme will not be able to correctly
amortize the load between the available links, at least in
short timescales. We view this as a fundamental prob-
lem with the DNS-ITE method, which cannot be avoided
given that the delayδ is unknown and it varies across
LDNS servers and connection requests.

6 Conclusion

In this work, we looked at the problem of ingress traf-
fic load balancing using DNS-based techniques (ITE) in
multihomed networks. We implemented an ITE load
balancer for a content server, and designed a wide-area
client testbed with realistic workload characteristics. Our
contributions are two fold.

First, we showed that the accuracy of ITE can be im-
pacted by factors which include (1) aggregate client load,
(2) DNS TTL policies in client networks, (3) hidden
clients, and (4) heavy-tailed content sizes. We found
that large aggregate load (1) can improve accuracy, while
TTL violations (2), 3, and 4 can degrade performance.
These observations can be used to design a content dis-

tribution service which aids load balancing.
Second, we showed that measurement-based (MB)

schemes improve performance over a round-robin
scheme when the length of measurement history is short
enough. We evaluated the impact of high variance and
staleness in measurement history. We finally looked at
limitations of MB schemes due to inherent nature of the
ITE problem.

References

[1] Aditya Akella, Srinivasan Seshan, and Anees
Shaikh. Multihoming performance benefits: An ex-
perimental evaluation of practical enterprise strate-
gies. InProc. USENIX Annual Technical Confer-
ence, Boston, MA, June 2004.

[2] V. Cardellini, M. Colajanni, and PS Yu. Dynamic
load balancing on Web-server systems.Internet
Computing, IEEE, 3(3):28–39, 1999.

[3] M. Dahlin. Interpreting Stale Load Information.
IEEE Transactions on Parallel and Distributed Sys-
tems, pages 1033–1047, 2000.

[4] A. Dhamdhere and C. Dovrolis. Twelve Years in
the Evolution of the Internet Ecosystem.Network-
ing, IEEE/ACM Transactions on, PP(99):1, 2011.

[5] Fanglu Guo, Jiawu Chen, Wei Li, and Tzicker Chi-
ueh. Experiences in building a multihoming load
balancing system. InProc. IEEE INFOCOM, Hong
Kong, March 2004.

[6] M. Harchol-Balter, M.E. Crovella, and C.D. Murta.
On Choosing a Task Assignment Policy for a Dis-
tributed Server System.Journal of Parallel and
Distributed Computing, 59(2):204–228, 1999.

[7] Xiaomei Liu and Li Xiao. Inbound Traffic Load
Balancing in BGP Multi-homed Stub Networks.
IEEE ICDCS, 0:369–376, 2008.

[8] Z.M. Mao, C.D. Cranor, F. Douglis, M. Rabi-
novich, O. Spatscheck, and J. Wang. A precise and
efficient evaluation of the proximity between web
clients and their local DNS servers. InUSENIX An-
nual Technical Conference, 2002.

[9] M. Mitzenmacher. How Useful Is Old Information?
IEEE Transactions on Parallel and Distributed Sys-
tems, pages 6–20, 2000.

[10] M. Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing.IEEE Transactions
on Parallel and Distr. Sys., pages 1094–1104, 2001.

[11] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy,
and S. Seshan. On the responsiveness of DNS-
based network control. InACM IMC, 2004.

[12] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaven-
ture, and S. Uhlig. Interdomain traffic engineer-
ing with BGP. IEEE Comm. Mag., 41(5):122–128,
2003.

8

	1 Introduction
	2 Workload Characteristics of a Content Provider
	3 System Implementation and Deployment
	4 DNS-ITE Performance
	5 Measurement-based DNS-ITE
	6 Conclusion

