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ABSTRACT

Decision trees have been used for several decades as sim-
ple and effective solutions to supervised learning problems.
Their success extends to tasks across a variety of areas.
Yet, data collected today through web-domains such as on-
line advertising presents many new challenges: sheer size,
the prevalence of high-arity categorical features, unknown
feature-values, “cold starts”, sparse training instances, and
imbalance in the class labels. We argue that decision trees
remain an ideal choice for applications of on-line advertis-
ing as they naturally construct higher-order conjunctive fea-
tures; we then contribute two ideas to improve tree-building
accordingly. First, to handle high-arity categorical features,
we introduce a method to cluster feature-values based on
their output responses. The result is more “data-dense” trees
with relatively small branching factors. Second, we employ
cross-validation as a principled approach to derive splitting
and stopping criteria: thereby we identify splits that gen-
eralize well, and also curb overfitting. Evaluated on three
distinct probability-estimation tasks in on-line advertising,
our method, “CCDT”, shows significant improvements in the
accuracy of prediction.

Categories and Subject Descriptors

1.2.6 [Computing Methodologies|: Artificial Intelligence—
learning

General Terms
Algorithms

Keywords

Decision trees, categorical features, on-line advertising, clus-
tering, cross-validation.

*Shivaram Kalyanakrishnan contributed to this paper when
he was at Yahoo Labs Bangalore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM 2014, Shanghai China

Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Deepthi Singh, Ravi Kant
Yahoo Labs Bangalore
Bengaluru Karnataka 560071 India

{drsingh, rkant}@yahoo-inc.com

1. INTRODUCTION

Supervised learning is perhaps the most common and typ-
ical form of machine learning [5, see Chapter 1]. Given a set
of “key-response” pairs (X, y), the objective is to learn a
mapping that can be applied to a new key X to predict its
response y. For example, a bank could apply supervised
learning in order to detect (and thereby prevent) fraudulent
credit card transactions. Here the key could be represented
by features such as the time of the transaction, the area
code, the amount, and the number of transactions from the
account in the last 24 hours; the response would be either
“fraud” or “no fraud”.

Being a very general setting, supervised learning has re-
ceived a great deal of attention over the years: numerous
approaches have been proposed to model and learn the map-
ping between key and response. Examples include linear re-
gression, logistic regression, decision trees, neural networks,
support vector machines, and nearest-neighbor techniques
[5, 16]. Naturally every learning method has strengths and
weaknesses with respect to different types of problems [21],
and so it becomes critical for a practitioner to (1) select the
most appropriate method for his/her problem and (2) adapt
the chosen method specifically for the task at hand.

In this paper, we argue that the inbuilt capability of de-
cision trees to handle categorical features makes them a
natural choice in applications of on-line advertising, where
such features are predominant. Specifically, tree-building
amounts to constructing discriminative higher-order con-
junctions of the atomic features. This defining aspect of
decision trees relieves much of the burden of domain anal-
ysis and feature engineering, which are far more critical to
the success of contrasting approaches such as regression. In
a domain such as on-line advertising, where new features be-
come available periodically, and response patterns drift over
time, the “representation discovery” that comes “for free”
with decision tree-building is especially appealing.

A key technical challenge remains to be surmounted to
scale decision tree algorithms to the on-line advertising do-
main: the categorical features typically encountered therein
can take a very large number of values (sometimes tens of
thousands). Canonical decision tree algorithms are not de-
signed with such “high-arity” features in mind. The first
contribution of this paper is a method to recursively cluster
feature-values based on their output responses, thereby re-
ducing the branching factor of trees and keeping them “data-
dense”. High-arity features and the size of web data also im-
ply that the resulting trees are large, often with millions of
nodes. To minimize suboptimal splits and arrest their com-



pounding effects as large trees get built, our second contri-
bution is a cross-validation-based rule to explicitly promote
good splitting and stopping decisions at each node.

This paper is organized as follows. In Section 2, we pro-
vide a brief review of decision trees. Section 3 presents an
overview of on-line advertising, highlighting the relevance of
decision trees to tackle supervised learning problems in this
domain. Section 4 provides a detailed description of our im-
proved decision tree-building algorithm, denoted “CCDT”.
We present an experimental evaluation of the algorithm in
Section 5, and an accompanying discussion in Section 6. Sec-
tion 7 serves as the conclusion.

2. DECISION TREES

Decision trees [32] are a natural way to map keys to re-
sponses. A decision tree partitions the universe of keys and
associates a predicted response with each cell of the result-
ing partition. Thus, the predicted response for a (test) key
is simply the prediction associated with the cell to which
the key belongs. The partition is learned and represented
hierarchically, as a tree, wherein each cell corresponds to a
leaf. Figure 1 presents a schematic depiction of a decision
tree for the credit card fraud-detection example described in
Section 1.

There exist well-established algorithms, such as ID3 [32]
and C4.5 [33], for inducing decision trees from training data.
These algorithms work in a top-down fashion, initialized
with a root node containing all the training data. Nodes are
recursively split until some termination condition is met. As
in the illustration in Figure 1, splits typically correspond to
conditioning on a value of some categorical feature (exam-
ple: value “31451” of feature “area code”), or on a range into
which a real-valued feature (example: range “< 3” of feature
“transactions in last day”) could fall. At a given node, it is
usual to evaluate the splits that apply and to pick the one
that separates the node’s data into the most “homogeneous”
sets. Depending on the application, homogeneity is suitably
defined: information gain and gain ratio [32] are common
criteria when the responses are categorical.

Splits are typically chosen greedily, based on a 1-step look-
ahead. While multi-step look-ahead can potentially yield
better splits, it is usually ruled out because of the added
computational cost. Even so, a greedy approach typically

amount

Figure 1: Illustrative decision tree for credit card
fraud-detection (see Section 1). The highlighted
path-to-leaf is interpreted as follows: if the trans-
acted amount is less than $500, and there have been
three or more transactions in the last 24 hours, and
the area code is 42683, then “no fraud” is predicted.

produces trees where “informative” features occur close to
the top, splitting the training data into more homogeneous
regions in which other features might then become discrim-
inative. Nodes are not split further when the responses of
the training data reaching the node become sufficiently ho-
mogeneous: the majority class in the set of responses could
be taken as the prediction in classification tasks, and the
mean response taken as the prediction for regression tasks.
In the example in Figure 1, note that instead of picking a
categorical outcome, we could indeed predict the probability
of “fraud” (and therefore, also of “no fraud”). The corre-
sponding prediction at a leaf would simply be the fraction
of “fraud” responses contained therein.

The literature on decision trees is too large to summarize
here; the excellent survey by Murthy [27] describes several
algorithmic variants and applications.

3. ON-LINE ADVERTISING

Over the last few years, computational advertising has
emerged as a field in its own right [9], with large numbers of
advertisers, users, publishers, and networks transacting at a
high frequency in an automated fashion. Due to the sheer
volume of the traffic, the monetary implications of on-line
advertising are substantial. On-line advertising can be split
into two broad categories: display and search advertising.
Display advertising can itself be divided into two channels:
guaranteed delivery (GD) and non-guaranteed delivery
(NGD). Below we describe these advertising models and the
predictions tasks that arise therein.

Display Advertising: Guaranteed Delivery. Under
GD advertising, advertisers negotiate deals with publishers
to target specific user segments with ad campaigns, usu-
ally for a predetermined period. For example, a contract
might dictate that advertiser A will pay publisher P a cer-
tain amount if ads from A’s campaign are shown to male
users in the age group 30-40 in Germany in the period May
15-June 15, guaranteeing at least 2,000,000 impressions (ad
views). Publishers tend to have fairly accurate projections of
the traffic on their websites from different segments, and so
it becomes a planning problem for them to decide how most
profitably to apportion future impressions among competing
advertisers [4].

Before committing to a contract, A would naturally want
to estimate the value it would get from the campaign under
consideration. Specifically A would want to know to what
extent the campaign would engage the user segment being
considered. User clicks serve as a proxy for user engagement,
and so an estimate of the click-through rate (CTR) for the
campaign, among the specified user segment, would be a
useful input to A’s strategy. The projected CTR could also
be used by P to attract advertisers such as A to purchase
GD campaigns.

It is quite common that there will not be sufficient histor-
ical data exactly associating the chosen user segment with
A’s intended campaign; rather, the corresponding CTR-
estimate would have to be derived based on statistics from
A’ previous campaigns on similar segments. Thus, the case
arises for learning a mapping between (1) keys comprising
user, publisher, and advertiser attributes, and (2) CTR.

Display Advertising: Non-guaranteed Delivery. In
the NGD model, advertisers place bids in an auction for



showing their ads on publisher pages; the auction is con-
ducted through an intermediary entity called the ad ex-
change. An auction occurs every time a user visits a par-
ticipating publisher’s web page on which there are slots
for NGD ads (see Figure 2). McAfee [24] provides a com-
pelling overview of the challenges involved in designing ad
exchanges. Our specific interest here is in a supervised learn-
ing problem that the exchange needs to solve.

Advertisers place bids in the exchange using different “pric-
ing types” to display their ads. In particular, an advertiser
might choose to pay a cost per mille (CPM), cost per click
(CPC), or cost per action (CPA). Under CPM, the adver-
tiser agrees to pay its bid (divided by 1,000) if the publisher
gives it an impression; under CPC, the advertiser only needs
to pay if the impression results in a click; under CPA, a
payment is due only if an action (such as a purchase or a
subscription) occurs.

How must the winner of each auction be selected so as
to maximize the publisher’s revenue? The publisher’s over-
all expected revenue is maximized if in each auction, the
ad exchange picks an ad that maximizes expected payment.
Under the CPM pricing type, the advertiser’s expected pay-
ment is the same as its bid (divided by 1,000), but under
CPC, the expected payment is the product of the bid and
the probability of a click. Likewise, under CPA, the expected
payment is the product of the bid and the probability of an
action. Thus, in order to act optimally, the exchange needs
to “normalize” bids under different pricing types by mul-
tiplying them with the corresponding probabilities, before
they can be compared and a winner picked. Herein lies the
problem of accurately predicting the probability of a click or
an action, based on recorded interactions among users, pub-
lishers, and advertisers. Figure 2 provides an illustration.

It is common practice to learn separate prediction models
for different pricing types. For example, one could learn
independent models for predicting the click-through rate
(CTR: the probability of a click given an impression) and
the post-click conversion rate (PCC: the probability of a
conversion (or action) given a click) [1, 34]. Multiplying the
predictions of these models on a key would yield the proba-
bility of an action given an impression.

Search Advertising. “Sponsored search” [15] is similar
to NGD display advertising in that advertisers bid to show
their ads to the user. However, unlike in display, bids are
placed on search keywords, which convey a strong signal of

/
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Ad Exchange

Ad 1, Bid = $0.1, CPM
Ad 2, Bid = $0.2, CPM
Ad 3, Bid =$1.1, CPC
Ad 4, Bid =$1.5, CPC
Ad 5, Bid = $10, CPA

User Advertisers

Figure 2: Schematic view of the interaction between
the entities participating in NGD advertising. If the
probabilities of clicks on Ad 3 and Ad 4 are 2% and
1% respectively, their expected payments are $0.022
and $0.015, respectively.

the user’s intent. Thus, when a user searches on a publisher
page using a certain set of keywords, advertisers who have
bid on these and related keywords become eligible to show
their ads. Payment is typically “pay per click” (PPC), which
is analogous to the CPC pricing type in display advertising.
Naturally, the most profitable strategy for the publisher is to
rank the ads based on their expected revenue, here equal to
the product of the bid and the probability of a click. Thus,
search advertising, too, calls for CTR~prediction.

In summary, probability-estimation problems lie at the
heart of virtually every channel of on-line advertising. User,
publisher, and advertiser features constitute the key; his-
torical logs yield empirical estimates of the corresponding
probabilities. Given the volume of advertising traffic, even
small improvements in prediction accuracy can result in sig-
nificant revenue gains.

3.1 Data Characteristics

For the purposes of this paper, we adopt the generic no-
tation of “successes” and “tries” to denote clicks and impres-
sions, respectively, in CTR-prediction; and conversions and
clicks, respectively, in PCC-prediction. For simplicity, we
refer to the ratio of successes and tries as “CTR”. To pre-
pare a data set for CTR-prediction, we aggregate all the
events sharing the same key, with which we then associate
the total number of successes, the total number of tries, and
the corresponding CTR.

Table 1 describes the three data sets we use in our exper-
iments: one each from the GD, NGD, and Search domains.
The GD and NGD data sets are prepared from traffic logged
at Yahoo: to maintain confidentiality, we do not disclose the
actual features used, and only report scaled versions of the
observed successes and CTRs. The Search data set is a pub-
lic one from the 2012 KDD Cup challenge (Track 2) [29]."
Our data sets illustrate the key challenges to be surmounted
in tackling prediction-problems in on-line advertising.

Large size. The foremost characteristic of data sets col-
lected on the Internet is their large size. Production systems
routinely have to process data sets with billions of tries. Our
GD and NGD data sets, recorded over the period of a few
days for specific advertisers and publishers, themselves have
tens of millions of tries. Grouping event-level data based on
keys brings down the effective number of lines, which is still
a few millions in our NGD data set.

High-arity categorical features. In on-line advertising,
features are derived from the three main participating enti-
ties involved: users, publishers, and advertisers. User fea-
tures, for example, could pertain to users’ age, gender, geo-
graphical location, preferences, purchasing habits, and such.
Publisher features could include the publisher index, page
URL, content category (such as News, Sports, and Enter-
tainment), and so on. Likewise, advertiser features could
also include various categories, along with indices identify-
ing advertisers, campaigns, and ads. Observe that most of
these features are naturally categorical. Moreover, unique

!The KDD Cup data set is available at: http://www.
kddcup2012. org/c/kddcup2012-track2. We use the follow-
ing features from this data set: url, ad_id, advertiser_id, depth,
position, gender, age. We ignore query-related features that
require further text-processing to become useful.



Table 1: Summary of data sets used for our experi-
ments. For purposes of confidentiality, the successes
and CTR in the GD and NGD data sets have been
scaled. All the features used are categorical.

GD NGD Search
Tries 148,641,519] 21,899,406 152,288,386
Successes|| 46,423 87,254 6,298,022
CTR 0.0003 0.004 0.041
Features || 8 11 7
Feature 600, 21, 21, | 9574, 8225, 940, [ 579903,
arities 17,10, 2,2, | 874, 313, 231, 26313, 15155,

2 182, 61,37,16,4| 6, 3, 3, 3
Keys 21,399 4,055,962 8,830,065

indices for publishers, advertisers, and campaigns can take
thousands of values, as seen in our NGD data set. An ad-
ditional source of information in search advertising is the
search query itself, which usually gives rise to real-valued
features after processing (for example, by taking dot prod-
ucts of bag-of-words representations). We do not consider
this class of features in this paper, but naturally it would be
useful to combine them (such as through a mixture model)
for obtaining more accurate predictions.

Sparse training instances. It is commonly seen with
high-arity categorical features that a large number of feature-
values occur infrequently in the data, but taken together,
these feature-values constitute a significant number of tries.
Consider the feature taking 9,574 values in our NGD data
set. Of these feature-values, 9,564 each occur less than 1%
of the time, but together they constitute roughly 50% of the
tries. Hence, a learning algorithm cannot afford to ignore
feature-values that occur infrequently.

Unknown feature-values and cold starts. Both due to
technical and business reasons, often it happens that some
features corresponding to an event cannot be logged. Thus,
for many features, “missing” becomes a feature-value, often
with a significant fraction of the tries. “Cold starts” refer
to situations in which feature-values not seen during train-
ing present themselves on-line, while testing. The continual
birth of new ads and web pages leads to a regular stream of
cold starts in on-line advertising.

Imbalanced classes. Clicks and conversions are rare events:

the number of successes in any CTR-prediction task is usu-
ally a few orders of magnitude lower than the number of
tries. Imbalanced classes, which are challenging even in the
classification setting, become especially so when the objec-
tive is probability-estimation [42].

The challenges enumerated above give a unique flavor to
supervised learning problems in on-line advertising. Large
data sizes are common to most applications on the web.
Domains such as on-line shopping and recommendation sys-
tems, where entities such as users, publishers, advertisers,
and products are categorized and indexed, also share the
characteristic of having categorical features.

3.2 Why Decision Trees?

Decision trees are particularly well-suited for the CTR-
prediction tasks described above, since they naturally get

built using categorical features. Methods such as logistic
regression, support vector machines, and neural networks
are inherently set up to work on real-valued features: to
employ them for these tasks, we would first have to translate
our categorical features into useful real-valued (for example,
boolean) features.

Indeed Rosales et al. [34] present a successful application
of logistic regression to CTR-prediction, wherein categorical
features are first converted into boolean features of the form
“Does feature F' take value v?” The number of such “unary”
boolean features is the arity of F. Since logistic regression
combines these features linearly (before passing the result
through a sigmoid), it becomes necessary to have more dis-
criminative boolean features. Rosales et al. therefore also
construct “quadratic” boolean features of the form “Does fea-
ture F take value vi and feature F» take value v2?” The
fundamental tradeoff in this scheme is that we can obtain
increasingly discriminative boolean features by adding more
terms to the conjunction—but the size of the resulting set
of boolean features grows exponentially!

Hashing is a common technique for learning a smaller
number of coefficients than the number of real-valued fea-
tures used in logistic regression [39]. While it is true that
a minimal amount of collision is usually harmless, we find
for our data sets and features, when using a hash table with
226 entries, that the collision ratio can be as high as 100,
significantly reducing the prediction-accuracy.

Agarwal et al. [2] also present an architecture based on lo-
gistic regression for CTR-prediction. Indeed their approach
has benefits such as faster computational speed (if initial-
ized favorably) and the ability to train separate parts of
the model at different time scales. Yet, the success of their
scheme crucially depends on a refined understanding and
analysis of the domain: how different features interact, which
ones suffer cold starts, and so on. Other work in the on-line
advertising setting [1, 22, 25] also explicitly models known
dependencies among features (such as hierarchies) to im-
prove the accuracy of prediction.

In this paper, we adopt the philosophical perspective that
in the future, new features are bound to become periodi-
cally available in the on-line advertising world; also, corre-
lations between features and CTRs will change with time.
Rather than invest the manual effort to keep pace with this
evolving environment, it makes sense to trust the algorithm
with representation discovery. In this respect, the approach
of constructing a manageable number of highly-conjunctive
features (as leaves in a decision tree) is much more scalable
than working with a large number of shallow features, or
even a small number of handcrafted ones. Of course, de-
cision trees, too, could benefit from manual intervention in
feature-construction whenever possible.

Decision trees are an added boon when dealing with cold
starts: if we reach a node and find no child corresponding
to a feature-value, we can simply use the empirical CTR at
that node as our prediction. Logistic regression has no such
natural fall-back, and calls for specialized handling [2]. The
well-documented tendency of logistic regression to system-
atically under-predict probabilities of rare events [26, 38, 42]
is also a weakness in the case of CTR-prediction.

Ensemble methods, which combine predictions from a set
of base predictors, usually work quite well in practice be-
cause they achieve a lower variance than individual predic-
tors. Indeed random forests [7] outperform decision trees



on a number of problems, and so it is natural to consider
how they might fare for CTR-prediction. Unfortunately,
when the target predictions are small probabilities, ensem-
ble methods are prone to over-predict [28]. Since individual
predictions cannot fall below 0, they cannot cancel out large
over-prediction errors. Calibration of the probabilities [22,
28] can remedy this phenomenon to some extent. Gradient
boosted decision trees [40] are yet another ensemble method;
unfortunately boosting is a sequential process, which is not
practically feasible when each tree takes a few hours to build.

We conclude that decision trees are an ideal choice for
CTR-prediction tasks in on-line advertising. The main chal-
lenges they face in this relatively-new domain are the high
arity of categorical features, as well as the size of the data,
which necessitates large trees. In the next section, we de-
scribe our approach for addressing these challenges.

4. TREE-BUILDING WITH CLUSTERING
AND CROSS-VALIDATION

In our aggregated training data, each record R is of the
form (X, s, t), where key X is a vector of feature-values, s
is the corresponding number of successes, and ¢ the corre-
sponding number of tries, t > s > 0, ¢ > 0. Our objective is
to learn a predictor that given a key X, makes a prediction
p € [0,1]. We find it convenient to denote the key, suc-
cesses, and tries corresponding to record R as X(R), s(R),
and t(R), respectively.

We initialize tree-building with a root node that contains
the entire training data set. Since decision trees are con-
structed recursively, let us consider a general node N, and
let D be the set of records that have reached N. Our options
are to either

1. split N into child nodes, partition D into correspond-
ing sets associated with each child node, and undertake
tree-building from each child node, or

2. stop, make N a leaf, assign the output response N.p.

We describe these steps in sections 4.1 and 4.2, before
summarizing the full procedure in Section 4.3.

4.1 Splitting Strategy

A splitting strategy is defined by two choices: (1) the set
of splits © considered at N, and (2) the “goodness” function
g to evaluate each split # € ©. Once these choices are fixed,
the natural approach is to split N based on

0" = argmax g(0).
EC)
The main contributions of our paper are choices of © and g

specifically intended for large decision trees with high-arity
categorical features.

4.1.1 Clustered Splits

In canonical decision tree-building [32], exactly one split
is considered for each feature that occurs in D. For feature f
that takes values v1,v2,...,vn in the records present in D,
the split is of the form wvi|ve|...|vm. Recall that m can be
very large in our application, and that a significant number
of feature-values each have only a small number of tries.
Consequently a split of the form vy |vz|. .. |vy will result in
a large number of child nodes wherein subsequent stopping

and splitting decisions will become suboptimal, owing to the
lack of statistically-significant data.

We propose considering a larger set of splits ©, with mul-
tiple “clustered” splits corresponding to each feature f. For
j € {1,2,...,m}, let D; be the set of all records in D in
which f takes the value v;. Let S; be the total number
of successes in Dj, and T the total number of tries in Dj.
Thus, % is the empirical CTR of the records in D for which

feature f takes value v;. Without loss of generality, let

S G- G
Ty Ty — I
Rather than consider the full m-arity split vi|ve|... |vm,

we cluster feature-values with similar CTRs to enforce a
lower-arity split. For example, if we consider 2-clusterings,
we would get m — 1 splits, each with arity 2:

vivz Vg VeV U,

v1 V 2|vg Vg V-V oy,

vi Vua VeV Ug_1|Um.

For a fixed value of k € {2,3,...,m}, the number of k-
clusterings that respect the indexing based on CTRs is (71?:11)
One is apt to wonder why we do not consider clusterings that

do not respect the CTR-based indexing, for example
v1 V ug|vg Vus Vuglva Vor Vog Ve Voo,

as a 3-clustering. The reason owes to our choice of “sum
squared error” (SSE) as a metric for evaluating clusterings.
Concretely, a k-clustering

C:{1,2,...,m} —={1,2,...,k}

assigns each feature-value to a cluster (with at least one
feature-value in each cluster). The SSFE of C is given by
m 2
e Sz
SSE(C)=> ti (f- - Mcm) :

=1
where the mean pu; of cluster [ € {1,2,...,k} is given by

Y Llel) =1 S;
M=Ssmaee =01

where 1[-] denotes the indicator function. It is easy to show
that among k-clusterings that minimize SSFE, there exists
one that respects the CTR~index. Even so, surely it would
not be computationally feasible to evaluate all (71?:11) possi-
ble k-clusterings that respect the CTR-indexing in order to
find an optimal one! Observe that our clustering is based
on CTRs, and therefore in 1-dimensional space. For the 1-
dimensional case, Wang and Song [37] present a dynamic
programming algorithm that can indeed find an optimal k-
clustering in O(m?k) time. We show in our experiments
that the k-means++ heuristic [3], which runs in O(mk) time
to find an approximate solution, indeed suffices in practice,
and can be run instead of dynamic programming when m is
large.

SSE is indeed the most natural and commonly-used met-
ric for evaluating clusterings [16, see Chapter 14]. Addition-
ally, this metric enables the use of an efficient procedure for
finding an optimal k-clustering of the m values taken by f.




Recall that our intent is to split N into a few dense clusters,
rather than into m sparse ones. However, observe that as
we increase k, the SSFE of the optimal k-clustering is mono-
tonically non-increasing: the optimal number of clusters to
minimize SSF is indeed m, the arity of f! The phenomenon
we are up against is overfitting: while a larger number of
clusters will fit the training data better, they are likely to
generalize poorly to test data.

We devise a goodness function that explicitly takes this
aspect into account while evaluating a clustering. SSE
still forms the basis of the goodness function, but a cross-
validation-based approach is adopted to achieve better gen-
eralization. Indeed this method shows that a smaller number
of clusters can generalize better.

4.1.2 Goodness of a Split

Consider two separate data sets, D™ and D'  each
having records R of the form (X, s,t)?. Now consider a split
0, which partitions the space of keys into ¢ sets 71, w2, ..., mq.
For every set 7y, u € {1,2,...,q}, consider all the records
from D" whose keys belong to m,: let SY*™ denote the
total number of successes in these records, and T the
total number of tries in these records. We can now associate
a prediction pII*™ with m,, as an estimate of the CTR of
records whose keys fall in 7,:

B SZrazn

train( )
p Tu) = Tﬁrain :

Note that 7, is a set determined solely by the split 6, and
™" (,) is estimated solely from D *™. Now, for every
record R, let w(R) denote the set among 71, 72,...,mq to
which X(R) belongs. The error that results from predicting
the CTR of R based on the split § and training data D" is

then % - ptmm(ﬂ'(R))‘. In aggregate, the SSE induced

by the split 6, when trained on D"*" but tested on D',
is given by:

s(R)
HR)

SSE(Dtrain,DteSt,e) — E t(R) ( ptrain(ﬂ_(R)))Q .

ReDtest

It is easy to observe that among the k-clusterings of a
feature f with arity m, the full-arity split will minimize
SSE(Dein ptrein ) However, the full-arity split will not
generalize well to records in D!, Our key idea is that
splits corresponding to the optimal k-clustering on D"
for values of k smaller than m are likely to generalize better
to records in D5,

To concretely define the goodness of a split, we separate
D, the data at the node N we are considering to split, into
five folds, with each fold containing roughly the same num-
ber of successes and tries (each event line is put into a fold
selected uniformly at random). We combine some four folds
at a time to derive a training set, and take the remaining
fold to be the test set. For every split 6, we define g(0) to
be the negative of the average value of SSE over the five
resulting train-test configurations.

2As we see subsequently, D™ and D'*' will both be
drawn from the training data for tree-building. D' is not
to be confused with the data we use to test our algorithm:
of course the algorithm itself does not have access to that
datal

A couple of technical issues arise in the cross-validation
scheme described above, owing to the features being cate-
gorical. For nodes with small numbers of tries, it is quite
possible that certain feature-values will not occur in some of
the folds. Thus, a split on a training-fold might not contain
a feature-value that occurs in a test record. If so, we take
the average CTR of D"*™ to be the prediction for the test
record.?

A second issue to consider is that for a feature f and
a fixed value of k, the optimal k-clusterings found in the
five train-folds might be different. Consequently we can-
not associate a cross-validated SSFE (and therefore, good-
ness) with a split. The natural alternative is to associate
a cross-validated SSE with every value of k. Precisely, the
cross-validated SSE of k is the average SSE among the five
train-test folds. The SSFE for each fold is the corresponding
test error on the optimal k-clustering of the corresponding
training set.

Cross-validation is typically used outside a learning al-
gorithm to tune its parameters; our novel use of this tech-
nique within each recursive step of decision tree-building in-
vests the learning method with greater autonomy. The plot
in Figure 3 validates our choice of cross-validated SSFE in
defining the goodness of splits. In this plot, we consider a
feature with arity 600 in our GD data set, measuring the
cross-validated SSFE for all values of k between 1 and 600.
The understandably high error for very small values of k ob-
scures the “u-shaped” pattern in the curve, which we amplify
in the inset. Observe that the optimal goodness is achieved
by a value of k = 41. Owing to the randomness involved in
creating folds for cross-validation, this number could vary
from run to run. However, our experiments show that such
variations are minor.

Cross-validated SSE
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Figure 3: The cross-validated SSE (the negative of
goodness) shown for different cluster sizes for a fea-
ture with arity 600 in the GD data set. For each
cluster size, five train-test pairs are considered. For
each pair, the optimal clustering is constructed on
the training set, and the SSFE of that clustering mea-
sured on the test set. The cross-validated SSE for
each cluster size is the average of the five test SSEs.

3Note that cold starts are handled similarly on-line: when a
test record R reaches a node N that is split on feature f, but
the split does not contain the feature-value of f in X(R), we
take the predicted response to be the ratio of successes to
tries in V.



4.2 Stopping

We stop growing node N and make it a leaf if any one of
three conditions is satisfied.

1. We do not expand N further if the number of successes
in the data D reaching N is smaller than a thresh-
old, minSuccesses. A small number of successes implies
there is not enough data to justify the decision to split.

2. When we split D into folds, and find that the arity of
some feature f becomes 1 in any of the training sets,
then a split based on that feature would be trivial. If
every feature in D leads to such a trivial split, we do
not split V.

3. The conditions listed above are essentially mechanisms
to handle edge cases. The main stopping condition we
employ draws from the same logic driving our split-
ting strategy: that the value of k£ minimizing cross-
validated S'SE should picked for a split. Consider that
we might well find that the cross-validated SSFE is min-
imized by k = 1. Such an event is likely to occur when
there are few tries in IV, and the splits we find overfit
the training data in the corresponding folds. A split
with £ = 1 amounts to retaining N as a single cluster.

If we stop and make N a leaf, the ratio of successes to
tries in D is set as the corresponding prediction N.p.

4.3 Summary of Algorithm

In this section, we tie together the splitting strategy de-
tailed in Section 4.1 and the stopping criterion described in
Section 4.2. Our tree-building algorithm, denoted CCDT
(referring to the use of Clustering and Cross-validation in
building Decision Trees), initializes a root node with the
entire training data set. The algorithm is recursive: at each
node N, containing data D, the following steps are followed.

1. If the stopping criteria from Section 4.2 apply, NV is
made a leaf and a corresponding prediction assigned.

2. If the stopping criteria do not apply, we consider ev-
ery feature that occurs in the keys of D. For each
feature f, we find k}, the cluster-size that yields the
lowest cross-validated SSE (the highest goodness), as
detailed in sections 4.1.1 and 4.1.2. We then pick a
feature f* such that the kj.-clustering of f* has the
highest goodness among all features and cluster-sizes.

3. We find the optimal k}.-clustering of f* on D, and
create a child node of NV corresponding to each result-

ing cluster. In turn, we undertake tree-building from
each child node.

We implement a distributed version of CCDT using the
Map-Reduce framework [10]. Following the approach adopted
by Kota and Agarwal [19, see Section 3], our procedure
starts at the root node and iteratively extends the tree one
level at a time.

S. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of CCDT on
the NGD, GD, and Search data sets summarized in Table 1.
The first two data sets are proprietary; we plan to release

them in the public domain in the near future. The Search
data set is a public one, from the KDD Cup 2012 (Track
2) [29]. For both the GD and the NGD data sets, recall that
we have event-level data (clicks, views) which we aggregate
over over the corresponding feature set. Thus we obtain suc-
cesses (s) and tries (t) for every feature vector X. For the
GD data set, the training and test sets are obtained by split-
ting the event-level data randomly in the ratio 85:15. For
the NGD data set we have event-level data for 31 consecu-
tive days. The first 30 days’ events constitute the training
set and the 31°" day’s events the test set. Recall that in this
paper, we only use the 7 categorical features found in the
Search data set, leaving out text-based ones. We aggregate
the given train and test sets on these 7 features.

5.1 Methods Compared
We compare CCDT with four other algorithms.

DT: Our first comparison is with an existing Decision Tree
model for predicting rare-event probabilities in a large-scale
system [19]. This “DT” variant uses gain ratio as the crite-
rion to select a winning feature at each node split. A node is
not split further if it reaches homogeneity or if the number of
successes at the node falls below a threshold (minSuccesses).
After the tree is built, pruning and Poisson-based smoothing
are applied [30]. In addition, DT uses some enhancements
to deal with the sparseness of feature-values, such as group-
ing together children with small numbers of tries based on
a heuristic. A full description of this model is provided by
Kota and Agarwal [19, see Section 2.4]

AC-DT: In order to observe the effect of clustering, we
also compare CCDT with a Decision Tree built on features
that are Clustered a priori (AC-DT). We cluster each fea-
ture with the optimal number of clusters using the technique
described in Section 4.1, where cross-validated SSFE is the
evaluation metric. Essentially this step amounts to prepro-
cessing the training data and building the model using the
DT variant described above (CCDT does the same process-
ing recursively). Table 2 lists the arities of the features in
the GD and NGD data sets before and after clustering.

DT+H: We also compare CCDT with a hybrid model re-
cently proposed for CTR-prediction [1]. Using the predic-
tion from DT as a base estimate, this hybrid model, DT+H,
learns multiplicative corrections that explicitly rely on the
Hierarchical relationships within advertiser and publisher
features [1, see Section 6.2]. Thus, the DT+H model has
the advantage of being provided these relationships as input,
which is not available to other models in this comparison.

Table 2: Arities before/after clustering in AC-DT.

GD NGD
Original Clustered Original Clustered

600 41 9651 352
21 12 8268 163
21 5 941 119
17 13 879 285
10 10 313 121
2 2 231 50
2 2 182 46
2 2 61 25
37 11

16 15

4 4




LR: Logistic Regression has been successfully used in the
past in CTR-prediction tasks [2, 34]. Although it is desir-
able to use more higher order boolean features, we only use
unary and quadratic features in our experiments (see Sec-
tion 3.2), which themselves lead to collision ratios exceeding
one on our data sets when using a hash table with 16 million
entries. We train the model using the Vowpal Wabbit [20]
software. To address the problem of class-imbalance [42],
we scale down negative examples by a factor k£ and apply a
corresponding correction during prediction [17].

The only parameter in CCDT, DT, ACDT, and DT+H,
minSuccesses, is tuned separately for each model and data
set. Both parameters in LR, the regularization parameter A
and the scaling factor k, are also tuned separately for each
data set to minimize RMSE (defined next).

5.2 Evaluation Metrics

Multiple metrics can be used as indicators of prediction
quality. To get a full picture of the performance of CCDT,
we compute four relevant metrics: Log-Likelihood (LL), Root
Mean Squared Error (RMSE), Area Under the ROC Curve
(AUC), and the Brier Score (BS).

Whereas LL and RMSE provide aggregate measures of
how well the predictions fit the empirical probabilities, AUC,
another popular metric, measures the relative ordering among
predictions, not their actual values [23]. BS [8] is akin to
the mean squared error, but on unaggregated (event-level)
data. It can further be “stratified” [36] to obtain separate
metrics for the positive and negative classes. BS™ is an es-
pecially relevant metric in this setting as the positive class is
rare. AUC is measured using Fawcett’s procedure [12]; the
other metrics are defined below. Recall that for each record
(Xi, si, ti), the predicted probability is p;.

L > silogpi + (ti — si) log (1 — pi)
Zi ti '

def

2
RMSE =\ ———%.

Zi ti

pg et 281 — i)+ (ti — si)pi®

Z'L L
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5.3 Results

Tables 3 and 4 list the errors observed for each of the
models on the NGD and GD data sets, respectively (Ta-
bles 5 and 6 present the percentage lifts over DT).4 Since
the GD data set does not have any hierarchical informa-
tion, we do not run DT+H on this data set. We use DT
as our baseline and make all comparisons with respect to it.

4Note that since our data is drawn from Bernoulli trials,
for a given t;, the empirical CTR s;/t; is likely more noisy
when s; is small. In our NGD data set, indeed we notice that
s;/(number of keys) is very small, in addition to the mean
CTR itself being small, which leads to unreliable estimates
of empirical CTR. To circumvent this problem, we aggregate
the keys, along with predicted and empirical probabilities,
over a smaller set of features. We find no need to do so in
the other data sets.

Recall that our optimal clustering algorithm using dynamic
programming takes O(m?k) time at each node; we also test
a version of CCDT, denoted CCDT-K, that uses the pop-
ular kmeans++ routine for clustering in O(mk) time. We
observe from Table 6 that this approximation does not re-
sult in a significant loss of accuracy. On the GD data set,
CCDT-K takes less than 4 hours to complete on our cluster,
whereas CCDT takes over 12 hours.

On both the GD and NGD data sets, it is seen that AC-
DT indeed improves upon DT on all the metrics as hypoth-
esized. Thus, clustering each feature, even once as a pre-
processing step (on the entire training data), is beneficial.
On both data sets, we observe that CCDT improves all the
metrics further by applying the same principle at each node.
Moreover, CCDT has significantly better LL and RMSE.
With respect to the AUC metric, a marginal improvement
is seen on the NGD data set, while a significant improve-
ment is seen in the GD data set. On both data sets, CCDT
performs better than LR on all the metrics listed, affirming
our hypothesis from Section 3.2. Observe that on both data
sets, the decision tree-based algorithms consistently outper-
form LR on the BST metric, which measures the accuracy
of predictions on the rarer class.

On the Search data set, we compare CCDT-K and LR
with the DT baseline; Table 7 shows the lifts in metrics
with respect to the baseline. On all the metrics, CCDT
outperforms LR. On this data set, we do not see a clear
winner across all metrics when comparing CCDT and DT.

As a part of further analysis, we consider the trees built
by our algorithms. We find that CCDT and its variants not
only perform better on the metrics listed, but they also build
relatively compact trees. Figure 4 allows us to visualize the
distribution of tries across nodes, in trees built by CCDT
and DT on the NGD data set. Most starkly apparent is that
the size of the tree learned by CCDT (19,380 nodes) is much
smaller than that of DT (157,269 nodes). Naturally, CCDT
bears the overhead of maintaining cluster indices in each
node; even so, the overall memory footprint of the CCDT
tree is only 5.5MB, compared to the 13MB taken up by the
DT model. Thus, even with a more compact representation,
CCDT is able to learn a more accurate predictor.

In summary, our experiments affirm the intuition that
clustering and cross-validation both contribute to building
more compact yet predictive decision trees. CCDT emerges
a clear winner when compared with the other models.

6. DISCUSSION AND FUTURE WORK

The central ideas investigated in this paper—clustering
and cross-validation—are both well-studied topics in ma-
chine learning. The novelty of our contribution is in apply-
ing them appropriately for building large decision trees with
high-arity categorical features. Historically, efforts in “scal-
ing up” [31] mostly focused on faster algorithms to process
large amounts of data. With the paradigm shifting to par-
allel computing on the cloud, our emphasis is on deriving
more accurate models. The cross-validation step in CCDT
is trivially parallelizable; the use of kmeans++ for cluster-
ing involves an O(mk) operation, rather than the O(m) of
canonical tree-building. Given the significant gains in pre-
diction accuracy, we consider this additional computational
overhead well-justified.

Our approach of undertaking cross-validation at each node
is similar to an idea proposed by Blockeel and Struyf [6].



Table 3: Results from NGD data set.

| [ LL | RMSE | AUC | BS | BS® | BS |
DT -0.069333 0.006286 0.941650 0.002004 | 0.187834 [ 0.000270
DT+H -0.063597 0.005400 0.957200 0.001963 | 0.182713 | 0.000276
LR -0.063791 0.005416 0.956800 0.001964 | 0.182603 | 0.000278
AC-DT || -0.063203 0.005720 0.957520 0.001977 [ 0.181778 | 0.000299
CCDT -0.062816 | 0.005055 | 0.957890 | 0.001948 | 0.179261 0.000294

Table 4: Results from GD data set.

LL RMSE AUC BS BS™ BS™

DT -0.018030 0.000808 0.716500 0.0003120 0.247605 0.00000148

LR -0.018411 0.000880 0.717421 0.0003124 0.248277 | 0.00000112

AC-DT -0.017098 0.000649 0.808800 0.0003110 0.245664 0.00000229

CCDT-K | -0.016940 | 0.000571 0.807700 0.0003107 0.245771 0.00000247

CCDT -0.017077 | 0.000566 | 0.810280 | 0.0003106 | 0.245727 0.00000251

Table 5: % lifts in NGD data set over DT.
LL RM AUC BS

SE
DT+H [ 827T% | -14.08% | 1.65% | -2.06%
LR -7.99% | -13.84% | 1.61% | -2.03%
AC-DT || -8.84% | -8.99% | 1.69% | -1.35%
CCDT -9.40% | -19.57% | 1.72% | -2.78%
Table 6: % lifts in GD data set over DT.
LL RMSE | AUC BS
LR 2.11% 8.91% 0.13% | 0.16%
AC-DT -5.17% | -19.71% | 12.88% | -0.30%
CCDT-K || -6.05% | -29.29% | 12.73% | -0.42%
CCDT -5.29% | -29.96% | 13.09% | -0.43%
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Figure 4: Histograms of nodes having similar num-
ber of tries, in the trees learned by CCDT and DT
on the NGD data set.

However, whereas their aim is to optimize the computational
speed of traditional cross-validation, in our algorithm, cross-
validation actually decides whether to split each node, and
if so, how. Note that cross-validation is also used in other
supervised learning methods, such as neural networks (for
adding hidden nodes) [35] and regression [14] (for tuning
the regularization coefficient). Our approach of using strat-
ified cross-validation (wherein the folds have roughly-equal
numbers of successes and tries) is a reasonable first-cut [18].
When the number of tries is small, it would be worth in-
vestigating whether approaches such as bootstrapping [11]
(sampling with replacement) would work better.

In the context of decision trees, clustering has been ap-
plied to keys that share real-valued features with similar
values (that is, in the input) [13]. By contrast, the feature-
values of categorical features are incomparable, prompting
us to cluster them based on their labels (that is, in the out-
put). In principle, the ideas presented in this paper can
also be applied to supervised learning problems wherein the

Table 7: % lifts in Search data set over DT.
LL RMSE | AUC BS

LR
CCDT-K

-2.68%
-0.76%

0.89%
0.48%

1.84%
-1.62%

2.72%
1.46%

output predictions are categorical or real-valued. We plan
to extend our algorithm to such problems in future work.
It would also be practical to speed up our Hadoop-based
implementation further, using newer frameworks such as
Spark [41].

7. CONCLUSION

On-line advertising has grown to become a multi-billion
dollar industry, wherein large numbers of users, publishers,
and advertisers interact every day through automated chan-
nels. In this paper, we consider a key scientific problem
that determines the health and profitability of advertising
systems: the problem of predicting click-through rates and
related probabilities. The input for this supervised learn-
ing problem consists of large volumes of data predominantly
represented using high-arity categorical features. Solutions
need to address these and other challenges such as unknown
feature-values, cold starts, sparse training instances, and
rare-event probability estimation.

We argue that decision trees are an ideal choice to ad-
dress problems in on-line advertising, as they naturally han-
dle categorical features, and automatically extract discrim-
inative higher-order conjunctions. We equip decision trees
to handle the high arities found in advertising data by em-
ploying an efficient procedure to cluster feature-values based
on their output responses. We also build cross-validation
into the splitting and stopping criteria at each node, rather
than using the technique to tune model-building parameters
in aggregate. Evaluated on three distinct data sets drawn
from the on-line advertising domain, our CCDT algorithm
outperforms existing decision tree algorithms as well as logis-
tic regression, significantly reducing the prediction error and
the size of the trees constructed. In future work, we plan to
adapt CCDT to work on classification and regression tasks,
and further optimize its parallelized implementation.
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