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Abstract

We consider the fundamental problem of linear regression in which the de-
signer can actively choose observations. This model naturally captures various
experiment design settings in medical experiments, ad placement problems and
more. Whereas previous literature addresses the soft-margin or mean-square-error
variants of the problem, we consider a natural machine learning hard-margin crite-
rion. In this setting, we show that active learning admits significantly better sample
complexity bounds than the passive learning counterpart, and give efficient algo-
rithms that attain near-optimal bounds.

1 Introduction
In this paper we consider a problem of experiment design from an active learning view-
point. The setting at hand is a linear regression problem where the error is not measured
in the standard mean square loss function, but rather in the natural 0-1 loss setting. That
is, a data point will induce a loss of cost one if the regressor produces an error larger
than some threshold and zero otherwise.

The 0-1 loss scenario is motivated by numerous real-life scenarios. The first exam-
ple is medical experiments: consider a scientist attempting to predict a condition ac-
cording to patient attributes. In this setting, different patients have different attributes,
or features, and the experiment designer goal is to test a minimal number of patients
before being able to successfully predict the condition of future patients based on their
attributes. In a regression setting it is likely that predicting the outcome up to some
small error will induce no loss, while erring by slightly more or much more will have
the same affect of mistreating the patient. Another example is a recommendation or
ad serving system where the objective is to serve relevant items to users. These items
could be movies, articles, webpages, advertisements, etc.. A very common approach to
the problem is to assume that the relevance of an item for a user is determined as a bi-
linear function of the features of the user and item. Consider the case where the users
are not given by their identity but only as a list of attributes such as gender, location,
age, etc (a common scenario in web related applications). By considering categories
of the items the problem is reduced to learning multiple regressors. The true objective
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of these regressors is to present relevant items to the users. The underlying objective
function aligns perfectly with the 0-1 loss setting; an item is either relevant or not rel-
evant, as indicated by the user when choosing whether to view / click / purchase the
item.

Formally we can model this experiment design setting as follows: a data set (of
patients/users/etc) is associated with a set of feature, or attribute, vectors K ⊆ Rd.
An experiment with patient x ∈ K corresponds to a noisy measurement, or “query”,
〈x,w∗〉 + εx, where w∗ is the optimal underlying linear model and εx is a zero mean
and bounded variance noise. The goal of the experiment designer is to adaptively
choose and measure a sequence of experiments with the goal of attaining, with high
probability, an ε-close estimate of entire data set 1

Figure 1: Illustration of a discrete experiment design: the main problem is to pick the
most informative experiments. In this case there is an optimal orthonormal basis that
spans the space - the two highlighted points.

The difficulty presented in this problem is two-fold: first there is the statistical-
geometrical difficulty of exploration - which experiments should be conducted in order
to accurately predict the values over all data points? Second - there is the optimization
difficult of efficient computation of the optimal linear regressor in an adaptive setting.
These two questions are obviously related - the ideal method should interpolate be-
tween measurements, optimization to identify the areas that require more exploration,
more experiments et cetera.

Clearly, if the data lives on the real line, Ω( 1
ε2 ) noisy measurements are required to

obtain an ε-approximate regressor. This is generalized to Ω( dε2 ) experiments for data
that lives in d-dimensional Euclidean space. The question becomes interesting once we
have very large data sets. Suppose there are n � d patients for which predictions are
needed, can we regress on the entire data making less than Θ(n) experiments?

Clearly in a passive-learning setting the answer is no. The distribution over the data
could be so skewed as to give no or very little information about an important part of
space. However - an active learner can potentially exploit the geometric structure of
the data and attain much better bounds.

Our main contribution is indeed an active/adaptive algorithm for experiment de-
sign in this framework that achieves the following guarantee: after querying Õ

(
d
ε2

)
carefully-chosen experiments, the algorithm returns a vector that is ε-accurate for all

1By standard techniques this can be generalised to a distributional setting, in which patients x arrive from
an unknown and i.i.d distribution x ∼ D and the requirement is that with probability at least 1 − δ the
regressor errs by less than ε.
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data points. Furthermore, our algorithm is computationally efficient and can be imple-
mented to run in near-linear running time given a low-variance exploration basis for
the experiment space (that can be constructed in polynomial time).

1.1 Related work
The natural problem we address has been considered before in many variants in two
main communities: experiment design and active learning.

Experiment design: In the statistical field called optimal design of experiments, or
just optimal design Atkinson & Donev (1992); Wu (1978) , a statistician is faced with
the task of choosing experiments to perform from a given pool, with the goal of pro-
ducing the optimal result within the budget constraint.

Formally, consider a pool of possible experiments denoted x1, ..., xn ∈ Rd. The
goal of the designer is to choose a distribution over the pool of experiments, such that
experiments chosen according to this distribution produce a hypothesis ŵ that is as
close as possible to the true linear function behind the data. The distance between
the hypothesis and true linear function can be measured in different ways, each corre-
sponding to a different optimality criteria. The common property of the criteria is that
they all minimize the variance of the hypothesis. Since the variance is not a scalar but a
d× d matrix, the different criteria differ by the fact that each one minimizes a different
function Φ : Rd×d → R over the covariance matrix. Common criteria are the A-, D-,
and E-optimality criteria. D-optimality, minimizes the determinant of the covariance
matrix, and thus minimizes the volume of the confidence region. In A-optimality the
trace of the covariance matrix, i.e. the total variance of the parameter estimates, is min-
imized. E-optimality minimizes the maximum eigenvalue of the covariance matrix,
and thus minimizes the size of the major axis of the confidence region.

The above criteria do not directly characterize the quality of predictions on test data.
A common criterion that directly takes the test data into account is that ofG-optimality.
Here the goal is to minimize the maximum variance of the predicted values. In other
words, by denoting VarS(xi) the variance of the prediction of xi after querying the
points of S, the goal in G-optimality is to minimize maxi VarS(xi). G-optimality and
D-optimality are closely related in the sense that an exact solution to one is the solution
to the other (see e.g. Spruill & Studden (1979)). Note that this criterion is similar to our
objective. The difference is two-fold. First, we do not aim to minimize the variance
but to obtain a high probability bound. Second, in optimal design the quality of the
distribution is measured when the budget tends to infinity. Specifically, notice that for
a distribution over the possible experiments, rather than a deterministic subset of them,
the corresponding covariance matrix is random. The discussed minimizations are done
over the expected covariance matrix, where the expectation is taken over the subset of
chosen experiments. When the budget tends to infinity the actual covariance matrix is
close w.h.p to its expected counterpart. We call this the infinite budget setting. Ours is a
finite budget setting where one does not aim to provide a distribution over the possible
experiments but a deterministic subset of them of a fixed size.

For the finite budget setting various relaxations have been considered in the statis-
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tical literature, usually without an approximation guarantee. Our method differs from
previous works of this spirit by: First, we do not impose a hard-budget constraint of
experiments, but rather bound the number of experiments as a function of the desired
approximation guarantee. Second, we obtain a computationally efficient algorithm
with provable optimality results. Finally, as an added bonus our solution has the prop-
erty of choosing very few data points to explore, potentially much less than the budget.
A motivating example for this property is the medical experiment design. Here a data
point is a human subject and it is more realistic to have few volunteers being thoroughly
tested on as opposed to performing few tests over many volunteers.

Our setting is arguably more natural for the medical-patient-experiment motivating
example; in general there are numerous examples where the budget of experiments is
not fixed but rather the tolerable error. Of equal importance is the fact that our setting
allows to derive efficient algorithms with rigorous theoretical guarantees.

A related and recently popular model is called random design Hsu et al. (2012);
Audibert & Catoni (2010); Györfi (2002); Audibert & Catoni (2011). In this setting
the designer is given a set of measurements {xi, yi|i ∈ [n]} for xi ∈ Rd drawn from
an unknown distribution D. The goal is to predict as well as the best linear predictor
measured according to the mean square error, i.e. minimize

E(x,y)∈D
[
(x>w − y)2 − (x>w∗ − y)2

]
where w∗ is the optimal linear regressor. Various other performance metrics have been
considered in the referenced papers, i.e. measuring the norm of the regressor vs. the
optimal regressor in a norm proportional to the covariance matrix. However, in this
setting an expected error is the criterion vs. our criterion of worst-case, or a high confi-
dence bound on the error2, which is more suitable for some experiment design settings.

Active learning: The most well-studied setting in active learning is pool-based ac-
tive learning McCallum & Nigam (1998), in which the learner has access to a pool of
examples, and can iteratively query labels of particular examples of her choice. Com-
pared to passive learning, in which labelled examples are drawn from a fixed unknown
distribution, known active learning algorithms can attain a certain generalization er-
ror guarantee albeit observing exponentially fewer labelled examples, e.g. Cohn et al.
(1994); Dasgupta et al. (2009); Hanneke (2007); Balcan et al. (2009), under certain
assumptions such as special hypothesis classes, realizability or large-margin. Active
learning with noise is a much less studied topic: Balcan et al. (2009) give an expo-
nential improvement over passive learning of linear threshold functions, but under the
condition that the noise is smaller than the desired accuracy. Real valued active learn-
ing with a soft-margin criteria was addressed in Ganti & Gray (2012). The reader is
referred to Dasgupta & Langford (2009) for a more detailed survey of active learning
literature.

2Our results though stated as a worst case error can be generalized to a high probability solution in the
random design scenario
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2 Preliminaries
Let Rd be the space of d dimensional vectors over the reals. Throughout the paper
we denote the set of n data points as K = {x1, . . . , xn}. We denote by w∗ ∈ Rd

the hidden regressor. A query at point x, reveals a noisy output denoted by ̂〈x,w∗〉
consisting of the true inner product 〈x,w∗〉 plus a zero mean noise. We operate under
the following assumptions: First, the different noise elements of different queries are
independent. Second, the output of ̂〈x,w∗〉 is always bounded in [−1, 1]; furthermore,
all of the data points x ∈ K and the hidden vector w∗ are in the Euclidean unit sphere.
Relaxations of these assumptions are in many cases possible via standard techniques,
and in this extended abstract we focus on the core problem. The objective in the Hard-
Margin Active Linear Regression problem, or ALR in short, is to to learn a regressor
w ∈ Rd where it holds with probability at least 1− δ that

∀x ∈ K, |〈x,w〉 − 〈x,w∗〉| < ε (1)

An algorithm for this problem has two measurements. First and more important for our
setting is the query complexity. That is, how many queries did the algorithm use? The
second measure is the computational complexity which is the running time.

Before diving into our algorithmic results, we mention here a lower bound on the
query complexity of ALR that can be derived by reduction to known lower bounds for
the stochastic multi-armed bandit problem. We prove the following theorem in section
3:

Theorem 1 (Query Complexity Lower Bound). Any algorithm for the ALR problem
requires Ω(d log(1/δ)/ε2) measurements in order to compute a linear regressor with
error of at most ε with probability larger than 1− δ.

2.1 Volumetric Spanners
A non-active solution to the ALR problem would simply experiment over all data points
sufficiently many times, and apply any optimization method for finding the optimal
regressor over the measurements. This is of course unsatisfactory - an active learner
would want to exploit similarities in data and closeness in feature space to achieve
faster learning.

An important technical tool for exploiting such structure is an informative explo-
ration basis. That is, a subset of points from K such that querying the points of this
set will provide the most information for all of the points in K. To this end we use a
recently devised geometric object called a volumetric spanner Hazan et al. (2013). A
volumetric spanner is a finite subset of K such that any point in K is spanned by it with
small coefficients, or formally:

Definition 1. Let K ⊆ Rd and let S = {v1, . . . , v|S|} be a (multi-)subset3 of K. Let V
be the d× |S| matrix whose columns are the vectors of S. For a vector x let

‖x‖E(S) =
√
x(V V >)−1x

3S can be a multi-set, meaning it can contain several copies of the same element
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The set S is a volumetric spanner of K when for all x ∈ K it holds that ‖x‖E(S) ≤ 1

We later show that the properties of the volumetric spanner are exactly those that
are required of an exploration set. That is, when querying the points of a set S ⊆ K,
the quality of the corresponding regressor w.r.t a data point x is exactly proportional
to ‖x‖E(S). The query complexity of the algorithm will be determined by the size of
the set S. In Hazan et al. (2013) it is proven that such spanners of cardinality O(d)
exist for any compact set K. Furthermore, for finite sets K ⊆ Rd of cardinality n, such
spanners can be found in polynomial time in n and d 4. Formally:

Theorem 2. [Hazan et al. (2013)] Let K ⊆ Rd be a finite set of size n. There exist an
algorithm that constructs a volumetric spanner for K of cardinality at most 12d whose
running time isO(n3.5 +n3d+d5). An alternative algorithm for the problem exits with
running time of O(nd2) achieving a volumetric spanner of size O(d log(d) log(n)).

3 A lower bound for passive linear regression
In this section we provide an example for a set X where the passive learning algorithm
must use Ω( nε2 ) observations to obtain a regressor w with additive error of at most ε
on all of the data points. We start by better defining the passive setup. Here, a query
returns a random point x chosen uniformly from the set K and a noisy measurement of
〈w∗, x〉. As before we assume that all points, including w∗ are contained in the `2 unit
sphere.

Our set K is defined in the following manner. Let Y ⊆ Rd be an arbitrary set of
size n− 1 such that for all x ∈ Y , 〈x, e1〉 = 0. Let K = Y ∪ {e1}.

Theorem 3. Any algorithm in the passive setting achieving an additive error of at
most ε in all of the data points of K whose success probability is 1 − δ requires
Ω(log(1/δ)n/ε2) queries.

The theorem is an immediate corollary of the following lemma.

Lemma 4. For K defined above, any policy distinguishing between the case where
〈w∗, e1〉 = −ε and 〈w∗, e1〉 = εwith probability larger than 1−δ must use Ω(n log(1/δ)/ε2)
queries.

Proof. We begin by mentioning that a query of a point x where 〈x, e1〉 = 0 provides
no information to the sign of 〈w∗, e1〉, hence does not help distinguish between the two
hypotheses. The following lemma provides a lower bound to the number of queries
at point e1 required to estimate the 〈w∗, e1〉 up to a sufficiently small additive error
and with sufficient confidence. It is a folklore lemma in statistics and appears e.g., in
Mannor & Tsitsiklis (2004) in a much more general form.

Lemma 5 (Theorem 1 of Mannor & Tsitsiklis (2004)). Let D be a distribution over
[−1, 1]. Let ε > 0 be such that for X ∼ D, |E[X]| ≥ ε. Let T be the expected number
of queries required by any algorithm that queries i.i.d copies of X ∼ D until being

4 Extensions to infinite sets is also addressed in Hazan et al. (2013), but outside the scope of this paper
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able to distinguish, with probability at least 1 − δ between the cases E[X] ≤ −ε and
E[X] ≥ ε. Then for universal constants ε0 > 0, δ0 > 0, c1, c2 it holds that if ε < ε0

and δ < δ0 then T ≥ c1 log(c2/δ)
ε2 .

It follows that the expected number of queries needed in order to distinguish be-
tween the two hypotheses with probability ≥ 1 − δ is at least c1n log(c2/δ)

ε2 , as the
probability of observing a query to the inner product with e1 is 1/n.

4 Our ALR solution
In this section we provide a high level description of our solution. In the following
sections we prove the following.

Theorem 6. There exists a solution to the ALR problem with success probability of at
least 1−δ with the following properties: (1) The solution requires a preprocessing stage
ofO(n3.5 +dn3 +d5) (2) it’s running time (after preprocessing) is Õ

(
nd log(1/δ)

ε2

)
and

(3) it’s query complexity is at mostO
(
d log(n) log(1/δ)

ε2

)
. An alternative algorithm exists

with a preprocessing time ofO(nd2) requiring an additional factor of log(n) log(d) for
the number of queries.

The intuition behind the algorithm is the following. We begin with a preprocessing
stage of computing a volumetric spanner S for the set of points K. Given this spanner
we can implement a procedure that outputs, for all of the points ofK simultaneously, an
unbiased estimator of 〈w∗, x〉 with variance of at most |S|. To demonstrate the useful-
ness of this estimator, consider averaging |S| log(n/δ)/ε2 i.i.d outputs of S. Standard
concentration bound show that w.p at least 1 − δ the estimates of all points in K are
correct up to an additive error of ε. Rather than computing a noisy output for w∗ on
the points and recovering a hypothesis w from that we use a technique by Clarkson
et al. (2012) that given an oracle for a function over a set of data points constructs a
hypothesis w using a small number of queries to the oracle.

4.1 Constructing a low variance estimator
In the following section we provide an algorithm that requires a black box providing
a noisy estimate of 〈x,w∗〉 to all of the data point of K simultaneously. The intuition
behind the algorithm is that given sufficiently many queries to the noisy estimator, a
union bound argument can ensure an accurate estimate in all of the data points simul-
taneously. In this section we begin with the description of this black box providing the
estimates.

The main tool used for this ‘all-point-estimator’ is the volumetric spanner. Algo-
rithm 1 provides the formal description of the method used to obtain the estimates.

The following lemma provides the analysis of Algorithm 1.

Lemma 7. Algorithm 1 queries a single point fromK. Its estimates have the properties
of (1) being unbiased and (2) have a variance of at most 12d. More formally, we have

∀x ∈ K . E[ˆ̀x] = 〈x,w∗〉 , Var(ˆ̀
x) ≤ |S|
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Algorithm 1 Sample(K)

1: Input: set K = {x1, ..., xn}, Volumetric spanner for K denoted S, and measure-
ment oracle that given x returns an unbiased estimator ̂〈x,w∗〉 with variance at
most one for some fixed w∗.

2: Choose a point vj ∈ S uniformly at random, query its inner product ˆ̀= ̂〈vj , w∗〉
3: let V be the d × |S| matrix whose columns are the elements of S, and let V † ∈

R|S|×d be its Moore-Penrose pseudo inverse.
4: For x ∈ K, let αx = V †x and let ˆ̀

x ← (αx)j ˆ̀· |S|
5: return estimates {ˆ̀x}

Proof.

E
[
ˆ̀
x

]
=
∑
j∈S Pr[vj ] · (αx)jE ̂〈vj , w∗〉 · |S|

=
∑
j∈S(αx)jE ̂〈vj , w∗〉

= (V †x)TV Tw∗ = 〈x,w∗〉

For the variance, recall that x ∈ K and S is a volumetric spanner of K indicates that
‖αx‖2 ≤ 1:

E[ˆ̀2x] =
∑
j∈S Pr[vj ] · (αx)2

jE
[

̂〈vj , w∗〉
2
]
· |S|2

≤ |S|
∑
j∈S(αx)2

j ≤ |S|

By Theorem 2 we can efficiently construct volumetric spanners of size |S| = 12d.

4.2 Algorithm and its analysis
In this section we present an algorithm for the ALR problem, following the primal-dual
paradigm of Clarkson et al. (2012). It assumes an oracle to a procedure Sample(K)
that returns a vector of length |K| whose entries are unbiased estimators of 〈x,w∗〉, for
all x ∈ K whose variance is upper bounded by Õ(d). Recall that such a procedure was
given in Section 4.1.

To avoid extraneous notions we will assume henceforth w.l.o.g thatK is symmetric
meaning that x ∈ K iff −x ∈ K. This is without loss of generality since an unbiased
estimator for 〈−x,w∗〉 is obtained by negating the estimator for 〈x,w∗〉.

Consider the following mathematical program:

min
‖w‖≤1

g(w) s.t. g(w) = maxx∈K cx(w)

cx(w) = 〈x,w〉 − 〈x,w∗〉

Note that by definition g(w∗) = 0, which is the optimal solution to the problem.
In addition, an ε approximate solution to the ALR instance, assuming ‖w∗‖ ≤ 1,
corresponds to a vector ŵ with g(ŵ) ≤ ε. The following algorithm is an instantiation of
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Alg 3 from Clarkson et al. (2012) applied to mathematical program 2 with the following
arguments:

1. The primal decision set {‖w‖ ≤ 1} and (linear) cost functions cx(w), admits
an iterative low regret algorithm, namely online gradient descent, with expected
regret E[R(T )] ≤ 2

√
T . This follows since the norms of x,w (for all x ∈ K) are

bounded by one. See e.g. Theorem 1 in Zinkevich (2003).

2. We assume oracle access to a procedure Sample(K) that returns, for all x ∈ K,
an unbiased estimate of cx(w∗) with variance at most s.

The following theorem provides the analysis of Algorithm 2. Given the above it is
immediately derived from Lemma 4.1 in Clarkson et al. (2012).

Theorem 8. Algorithm 2 runs in time Õ(dnε2 ) and requires O(d log d log(n)
ε2 ) queries to

the procedure Sample(K). It returns, with probability of at least 1
2 , a vector w such

that maxx∈K 〈w − w∗, x〉 ≤ ε.

In the following section we describe a validation procedure that can verify, w.h.p,
whether a proposed hypothesis is correct. The validation procedure will not increase
the asymptotic behavior of the sample nor running time complexity of the algorithm.
With it, we can repeat the procedure of Theorem 8 log 1

δ many times, and achieve a
high probability result described below.

Corollary 9. There exists an algorithm that runs in time Õ(
dn log 1

δ

ε2 ) and returns, with
probability of at least 1− δ, a vector w such that maxx∈K 〈w − w∗, x〉 ≤ ε.

Algorithm 2 Primal-Dual Algorithm
1: Input: T

2: Let w1 ← 0, q0 ← 1n, η ← 1
100

√
log(n)
T .

3: for t = 1 to T do
4: Query Sample(K) to obtains estimators ãt(i) for all ci’s
5: for i ∈ [n] do
6: at(i)← clip(ãt(i), 1/η)
7: qt(i)← qt−1(i)(1− ηat(i) + η2at(i)

2)
8: end for
9: Choose it ∈ [n] at random with Pr[it = i] ∝ qt(i)

10: wt ← wt−1 − 1√
t
∇wcit , where ∇wcit = xit

11: end for
12: return w̄ = 1

T

∑
t wt

4.3 Validation
In this section we present Algorithm 3 that given a hypothesis w, verifies, w.h.p., that
w is sufficiently accurate.
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Algorithm 3 Verification
1: Input: Volumetric spanner S, parameters ε, δ > 0
2: run Sample(K) T = 2 log(2n/δ)|S|/ε2 times and obtain for each data point in
K, T i.i.d samples of 〈w∗, x〉

3: for each x ∈ K let f̃(x) be the average of the above T samples.
4: declare w as accurate iff for all x, | 〈w, x〉 − f̃(x)| < 2ε

Lemma 10. Algorithm 3 has the following properties: (1) it requiresO(log(n/δ)|S|/ε2)
queries to the oracle (2) if the worst-case error of w is bounded by ε then w.p. at least
1 − δ it will be declared as accurate (3) if the worst-case error of w is larger than 3ε
then w.p. at least 1− δ it will be declared as inaccurate.

Proof. We recall that the process Sample(K) returns unbiased estimates of 〈w∗, x〉 for
all of the data points where the estimates are bounded in absolute value by |S|. By the
Chernoff bound it can be verified that for any given x ∈ K it holds with probability at
least 1− δ/n that | 〈w∗, x〉 − f̃(x)| < ε. A union bound shows that w.p. at least 1− δ
the above holds for all data points simultaneously.

5 The Agnostic Case
In this section we discuss the agnostic case, where the learned function is not nec-
essarily linear. The formal setting here is the following. There exist some function
f : K → [−1, 1] for which we have noisy access. That is, a query at point x ∈ K
returns an answer f̂(x) consisting of f(x) plus some zero mean noise. We denote by
w∗ ∈ Rd the optimal linear regressor, being the minimizer of the expression

Φ(w∗)
∆
= max

x∈K
|f(x)− 〈w∗, x〉|

We denote the attained value by λ. Our objective is to find a regressor w such that
Φ(w) is as close to λ as possible. We analyze both an algorithmic result obtaining a
multiplicative approximation to λ and proceed to show the tightness of this result in the
sense that any algorithm achieving a better approximation must query all of the data
points.

The following theorems describe both results correspondingly

Theorem 11. Let f : K → [−1, 1] and let

λ = min
w∈Rd

max
x∈K
|f(x)− 〈w, x〉| .

Given access to a noisy oracle of f , algorithm 2 equipped with the sample procedure
described in algorithm 1 outputs a regressor w such that with probability at least 1−δ,
for each point x ∈ K it holds that

|f(x)− 〈w, x〉 | ≤ O
(√

d log(d) · λ
)

+ ε

The query complexity of the process is O(d log(n) log(1/δ)/ε2).
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Theorem 12. For any integer n, 0 < λ < ln(2n)/d and any policy requiring o
(
n/(dλ2)

)
queries when given a set of n points in Rd, there exist a set of points K of cardinality
|K| = n and a function f : K → [−1, 1] with the following properties. First, there
exists some w∗ ∈ Rd such that Φ(w∗) = λ. Second, the solution w obtained by the
policy is such that

E[Φ(w)] ≥ λ · c

√
d

ln(2n)

where c > 0 is some universal constant. Here, the expectation is taken both over the
(possible) internal randomness of the policy and the query noise.

5.1 An Agnostic Algorithm
proof of Theorem 11. For simplicity we describe an algorithm with a success proba-
bility of at least 1/2. The high probability result can be achieved analogously to the
non-agnostic case (section 4.3). Recall from Algorithm 1 that S is the chosen volumet-
ric spanner of K with |S| = O(d). Recall that V is the d× |S| matrix whose columns
are the elements of S, and V † ∈ R|S|×d is its Moore-Penrose pseudo inverse. We also
recall that that for all x ∈ K it holds for αx = V †x that ‖αx‖ ≤ 1 and x = V αx.

We define for x ∈ K the function f̃(x)
∆
= f(V )>αx where f(V ) is the vector of

length |S| whose values are the values of f on the elements of S.

Observation 13. f̃(x) is a linear function. Furthermore, the procedure in algorithm 1
returns unbiased estimates of variance at most |S| to f̃ at all points x ∈ K simultane-
ously.

As a result of the above observation we get that by Theorem 8, when running
Algorithm 2 with T = Θ(log(n)|S|/ε2) queries to f we obtain, with probability at
least 1/2, a regressor w such that for all x ∈ K,∣∣∣〈w, x〉 − f̃(x)

∣∣∣ < ε (2)

This is since all of our queries are made by uniformly sampling an element of S,
hence the oracle we are querying is in fact an unbiased estimator for f̃ . It thus remains
to prove an upper bound for the `∞ distance between f and f̃ . Let w∗ ∈ Rd be the
optimal regressor and let b ∈ Rn be the vector of biases corresponding to w∗; that is
for x ∈ K, b(x) = 〈x,w∗〉 − f(x). For x ∈ K we have that

f̃(x) = f(V )>αx = w∗(V )>αx + b(V )>αx =

〈w∗, x〉+ b(V )>αx

It follows that ∣∣∣f(x)− f̃(x)
∣∣∣ =

∣∣f(x)− 〈w∗, x〉 − b(V )>αx
∣∣ (1)

≤

λ+
∣∣b(V )>αx

∣∣ (2)

≤ λ+ ‖b(V )‖
(3)

≤ λ
(

1 +
√
|S|
)

(3)

11



Transitions (1) and (3) are due to the optimality of w∗. Inequality (2) is due to the
Cauchy-Schwartz inequality and ‖αx‖ ≤ 1. The proof follows from combining in-
equalities (2) and (3), along with |S| = O(d).

5.2 Query Complexity Lower Bound
In order to prove the theorem we will present different scenarios that cannot be dis-
tinguished without using the required number of queries. To this end we will use a
negative result for the PAC setting of the Multi-Armed Bandit (MAB) problem. We
are interested in a special case of the problem; here, there exist some unknown vector
p ∈ [−1/2, 1/2]n and the player can query indices of p. Each query is independent
of the past and is a sample of a random variable in [−1, 1] with expectation pj where
j is the index being queried. The goal of the player is to find an index j whose value
pj is maximal, i.e, find maxargjpj . The theorem below provides a lower bound to the
number of queries required for the task. It is a special case of Theorem 5 in Mannor &
Tsitsiklis (2004).

Lemma 14. There exists a global constant c such that: For any p ∈ [−1/2, 1/2]n a
policy that successfully identifies maxargjpj with probability at least 2/3, requires at
least

c
∑
j 6=j∗

1

(pj∗ − pj)2

queries, where j∗ = maxargjpj .

We begin with the construction of the set of data points. Let x1, . . . , xn be i.i.d ran-
dom points chosen uniformly from the normalized hypercube {−1/

√
d, 1/
√
d}d. We

require the points to be uncorrelated in a manner guaranteed by the following lemma

Lemma 15. With probability larger than 1/2, it holds that for every j 6= j′ ∈ [n]

| 〈xj , xj′〉 | ≤
√

4 ln(2n)/d

Proof. Notice that 〈xj , xj′〉 =
∑d
i=1(xj)i ·(xj′)i = 1

d

∑d
i=1 Yi where the Yi’s are i.i.d

r.v chosen uniformly from {−1, 1}. By the well known Chernoff inequality we get that
for any t > 0

Pr

[∣∣∣∣∣
d∑
i=1

Yi

∣∣∣∣∣ > t
√
d

]
≤ 2 exp(−t2/2)

Taking t =
√

4 ln(2n) ensures the above probability is at most 1/n2 and a union bound
argument proves the lemma.

We define the set of data points as follows: x1, . . . , xn are points in the normalized
hypercube for which the statement of the above lemma applies. We define n scenarios,
enumerated from 1 to n that will be indistinguishable by the policy. For j ∈ [n],
scenario j is defined as follows: f(xj′) = 0 for all j′ ∈ [n] where j′ 6= j and f(xj) =

λ
√
d/4 ln(2n).
We first analyze the regressors of f in the different scenarios.

12



Lemma 16. In any of the above scenarios, there exists a linear regressor w∗ such that
|f(xj)−〈w∗, xj〉 | ≤ λ for all j. Furthermore, any regressor will achieve a worst case
error of at least

√
d/16 ln(2n)λ in n− 1 of the n scenarios.

Proof. We prove the first claim for scenario 1 and notice that the other scenarios have
analogous proofs. Let w = x1 ·λ ·

√
d/4 ln(2n). Notice that due to our assumption on

λ, w is contained in the unit sphere. For x1, we have f(x1) = 〈w, x1〉. For j > 1 we
have

|f(xj)− 〈w, xj〉 | = | 〈w, xj〉 | =

| 〈x1, xj〉 | · λ ·
√
d/4 ln(2n) ≤ λ

This proves the first claim in the lemma.
To prove the second claim, we define w as an arbitrary regressor and consider

two cases. In one, 〈w, xj〉 <
√
d/16 ln(2n)λ for all j. Clearly, the worst case error

is
√
d/16 ln(2n)λ in all scenarios. In the other case, for some point j, 〈w, xj〉 ≥√

d/16 ln(2n)λ. In any scenario except scenario j, f(xj) = 0 hence the worst case
error is at least

√
d/16 ln(2n)λ, proving the claim.

We now conclude the proof of Theorem 12 with a lemma showing that without
many queries, it is not possible to identify the correct scenario.

Lemma 17. Any policy that identifies the correct scenario with probability at least 2/3
requires Ω(n/(dλ2)) queries.

Proof. Consider the vector p ∈ Rn where pj = f(xj). Assuming sufficiently small λ,
p ∈ [−1/2, 1/2]n. Also, for j∗ = maxargjpj , it holds that∑

j 6=j∗

1

(pj∗ − pj)2
= Ω(n/(dλ2))

Finnaly, a policy that identifies the scenario with probability at least 2/3 implicitly
identifies the index j∗ with the same probability and by that solves the exploratory
MAB problem associated with p. Hence, by Lemma 14, it must use

Ω

∑
j 6=j∗

1

(pj∗ − pj)2

 = Ω
(
n/(dλ2)

)
queries.

proof of Theorem 12. Assume that the scenario defining f is chosen uniformly at ran-
dom among the n scenarios presented above. Consider a policy using o(n/(dλ2))
queries. According to Lemma 17, the correct scenario cannot be identified with prob-
ability larger than 2/3. This, and Lemma 16 indicate that with probability at least 1/3
the regressor chosen will have a worst-case additive error of at least

√
d/16 ln(2n)λ.

The claim of the theorem now follows.
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6 Conclusions and Open Questions
We have studied active real-valued learning (i.e. regression) in the presence of noise,
which has been studied before in the experiment-design literature. While exponential
separation of active and passive learning is notoriously hard, in the fundamental hard-
margin linear regression setting we show it to be attainable: while passive algorithms
require O( nε2 ) queries in order to correctly deduce the optimal linear regressor up to
precision ε, our active algorithm requires only Õ( dε2 ) queries.

The latter is attainable using recently-developed techniques in sublinear optimiza-
tion and exploration using volumetric ellipsoids.

We continue to study active regression in the agnostic setting, where we show that
the same algorithm gives a

√
d-approximation to the optimal linear regressor, and that

no algorithm can do better in general without querying all data points.
Many intriguing questions remain open: what is the query complexity of active

non-linear regression? Of particular interest is the characterization of the query com-
plexity of the most popular regression models, i.e. polynomial and support-vector re-
gression.
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