
Time-Aware Chi-squared for Document Filtering over Time

Tom Kenter
ISLA, University of Amsterdam

Amsterdam
tom.kenter@uva.nl

David Graus
ISLA, University of Amsterdam

Amsterdam
d.p.graus@uva.nl

Edgar Meij
Yahoo! Research

Barcelona
emeij@yahoo-inc.com

Maarten de Rijke
ISLA, University of Amsterdam

Amsterdam
derijke@uva.nl

ABSTRACT
Document filtering over time is applied in tasks such as
tracking topics in online news or social media. We con-
sider it a classification task, where topics of interest cor-
respond to classes, and the feature space consists of the
words associated to each class. In streaming settings the
set of words associated with a concept may change. In
this paper we employ a multinomial Naive Bayes classifier
and perform periodic feature selection to adapt to evolving
topics. We propose two ways of employing Pearson’s χ2

test for feature selection and demonstrate their benefit on
the TREC KBA 2012 data set. By incorporating a time-
dependent function in our equations for χ2 we provide an
elegant method for applying different weighting and win-
dowing schemes. Experiments show improvements of our
approach over a non-adaptive baseline, in a realistic settings
with limited amounts of training data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.5.4 [Applications]: [Text process-
ing]

1. INTRODUCTION
Traditional ad hoc information retrieval systems focus on

producing a ranked list of documents relevant to a user’s
query. Users might, however, persist in being interested in a
concept and might want to track it over time. In this paper
we propose a method for filtering a stream of documents for
the ones relevant to a certain topic. The task is modeled
as a multi-class classification task. Topics may evolve over
time, making a classical approach of training a classifier on
a set of examples and keeping it fixed at testing time unsuit-
able. We present a topic filtering system that is capable of
adapting to drift in topics by periodically selecting features
for a multinomial Naive Bayes classifier. Two versions of

The copyright of this article remains with the authors.
TAIA’13 August 1, 2013, Dublin, Ireland.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Pearson’s χ2 test are proposed for feature selection. Both
incorporate the notion of time, which is not considered in the
original formula. We show that both modifications improve
over a non-adaptive baseline.

2. RELATED WORK
An extensive body of research has been published about

topic tracking, from the seminal work by Allan [1] through
recent tracks in TREC KBA [2].

The effectiveness of using χ2 for selecting features has
been noted before, e.g., by Yiming and Pedersen [6]. Kim
and Chang [4] use χ2 in a multinomial Naive Bayes classifier
setting for selecting features and for weighting (boosting)
them. When incrementally updating feature weights they
use a supervised approach (i.e., the class a training exam-
ple belongs to is always given). Closest to our approach is
[3] in which a dynamic feature space is employed by using
χ2 for feature selection for a Naive Bayes classifier. Weka’s
implementation of χ2 is augmented to allow for incremental
updates, but no implementation details are provided. The
weighting of examples they describe might be similar to our
approach using Equation 2 and uniform and other decay
functions (see Section 3) though they weigh documents in-
dividually rather than in batches as we do. They use the 20
Newsgroups corpus as well as the SpamAssasin corpus and
extract training sets of 600 and 932 examples, respectively.
Updates of their models are based on ground truth classes.

In [5] SVMs are used for adaptive window management.
They use an exponential decay function like one presented
here (Section 3) to weigh examples rather than to select
features. The authors observe that adapting time windows
and batch selection works better than weighting batches. In
other words, it is better to either keep or discard examples,
rather than to apply weights to them.

In the literature, a common approach is to allow for adap-
tation based on the gold standard labels [3, 4]. In a real life
scenario this setting does not apply as the ‘real’ labels will
not be available. However, this scenario does provide an
upper bound on performance: how well can an adaptive ap-
proach perform in the most ideal circumstances?

Our work differs from the work described above in the
following important ways. Firstly we present two different
ways of calculating χ2 over time. Secondly, by incorporat-
ing a time-dependent function in our equations for χ2 we
provide compact and elegant methods for applying different
weighting and windowing schemes. Thirdly, we apply our

algorithms in a realistic setting where very little training
material is available. And, most critically, we use a setting
where the algorithms learn from their own predicted labels,
rather than the gold standard ones.

3. OUR APPROACH
Pearson’s χ2 test has proven to be a robust measure for

feature selection [3, 4, 6]. It is usually explained using a
contingency table:

w ¬w
c a c C
¬c b d ¬C

W ¬W N

Here, c is a concept, represented by a class in the present
case, and w is an word. Value a is the number of times c and
w co-occur, i.e., how many documents in class c contain w.
Similarly, b is the number of documents in which w occurs
which are not in c. W is the sum of a and b and N is
the summation over all values (a + b + c + d). The default
equation for calculating χ2 for a certain word and class then
is:

χ2 =
N(ad− bc)2

C · ¬C · ¬W ·W . (1)

As is evident from Equation 1, time plays no role in this for-
mula. In what follows we describe two ways of incorporating
the notion of time in this equation. We assume that there is
a stream of documents arriving over time. Sequential docu-
ments are accumulated in batches, which we will refer to as
time buckets.

3.1 χ2 from weighted contingencies over time
We can take a weighted sum over the contingency tables

of subsequent time buckets and calculate a χ2 measure at
time T from the result for every word in every class:

χ2
T =

N ′(a′d′ − b′c′)2

C′ · ¬C′ · ¬W ′ ·W ′ , (2)

where X ′ =
∑T

t=0 f(T − t) ·Xt, where Xt is the quantity of
X in time bucket t. The function f(·) can be used as a time
windowing or decay function (see below).

3.2 χ2 from weighted χ2 values over time
Alternatively, we can calculate a χ2 measure for every

time bucket, for all words and classes, and take a weighted
sum over those:

χ2
T =

T∑
t=0

f(T − t) · χ2
t , (3)

where χ2
t is the χ2 measure for time bucket t and function

f(·) is again a weighting or decay function.

3.3 Weighting or decay function
Different implementations of f(·) yield different variants

of Equation 2 and 3 and hence different properties of the
resulting classifier.

For the standard χ2-measure (1) computed across the en-
tire corpus one can simply apply f(t) = 1 to Equation 2.
For a sliding window of length L we use the following flat

decay function: f(t) =

{
1 if t ≤ L
0 otherwise

For a linear decay over a window with length L:
f(t) = max(0, 1− t/L).
For exponential decay we can apply f(t) = e−t.
Many other weighting functions exist, including ones that
allow for recurrent weighting for topics that appear period-
ically. The focus of this paper, however, is not to perform
an in-depth investigation of the effect of applying different
types of weighting functions. In our experiments we use a
flat, linear and exponential weighting function, because they
are simple, intuitive and commonly applied.

3.4 Adaptation
Adaptation occurs at two levels: updating the probabili-

ties for the Naive Bayes classifier and selecting new feature
sets per class. Since updating the probabilities is a cheap
operation we do so after every example.

Feature selection is performed at the end of every time
bucket, as it is based on χ2 and hence requires more ex-
amples (this applies in particular when Equation 3 is used).
Moreover, it is a more expensive operation. Based either
on Equation 2 or 3 we take the top n features per class.
These features together comprise the vocabulary used for
the multinomial Naive Bayes classifier.

Intuitively, the difference between the two approaches is
that Equation 2 captures saliency of a term for a certain
class (expressed by its χ2 value) regardless of its salience
at every time point, but based on all the past (weighted)
data. Equation 3, on the other hand, keeps track of the
strikingness of every term for each class per time bucket
and compiles a total from this (where every χ2 measure is
based only on the data per time bucket).

4. EXPERIMENTS
By integrating a time-dependent function in the χ2 equa-

tion, we can easily compare different adaptive settings. The
decay functions (Section 3.3) allow for weighting of past ma-
terial and defining a sliding window at the same time. In
what follows we discuss the experimental setup used for as-
sessing our approaches, as well as the outcomes.

4.1 Experimental setup and data

Data. The NIST TREC 2012 conference hosted a Knowl-
edge Base Acceleration (KBA) task whose aim it was to filter
a stream for documents relevant to a set of topics. We use
the TREC 2012 KBA data as described in [2]. There are
29 topics of interest and the documents are annotated for
different levels of relevance to these topics. Only documents
annotated as being ‘central’ are taken into account in our
experiments. After de-deduplication we are left with 8208
documents in total, of which 3140 are training documents
(i.e., they were published before the temporal cutoff) and
5068 are test documents (after the temporal cutoff). After
lowercasing and stemming (with the Porter stemmer), this
gives us 139284 unique features.

Number of training examples. In order to mimic a real
world scenario where a user is interested in a particular topic
but does not have tens or hundreds of example documents
at hand we use very little training examples in our experi-
ments; we only select either the last 1 or the last 2 training
documents per class. This emulates as best as possible an
environment in which adaptation is needed at runtime.

2 5 10 100

0
1
0

0
0

3
0

0
0

5
0

0
0

weightedConts − 50 per bucket

number of buckets

n
u
m

b
e
r

c
la

s
s
if
ie

d
 c

o
rr

e
c
tl
y

Flat weighting

2 5 10 100

weightedConts − 100 per bucket

number of buckets

2 5 10 100

weightedConts − 200 per bucket

number of buckets

2 5 10 100

weightedChis − 50 per bucket

number of buckets

2 5 10 100

weightedChis − 100 per bucket

number of buckets

2 5 10 100

weightedChis − 200 per bucket

number of buckets

2 5 10 100

0
1

0
0

0
3

0
0

0
5

0
0

0

weightedConts − 50 per bucket

number of buckets

n
u

m
b

e
r

c
la

s
s
if
ie

d
 c

o
rr

e
c
tl
y

Linear weighting

2 5 10 100

weightedConts − 100 per bucket

number of buckets

2 5 10 100

weightedConts − 200 per bucket

number of buckets

2 5 10 100

weightedChis − 50 per bucket

number of buckets

2 5 10 100

weightedChis − 100 per bucket

number of buckets

2 5 10 100

weightedChis − 200 per bucket

number of buckets

2 5 10 100

0
1

0
0

0
3

0
0

0
5

0
0

0

weightedConts − 50 per bucket

number of buckets

n
u

m
b

e
r

c
la

s
s
if
ie

d
 c

o
rr

e
c
tl
y

Exponential weighting

2 5 10 100

weightedConts − 100 per bucket

number of buckets

2 5 10 100

weightedConts − 200 per bucket

number of buckets

2 5 10 100

weightedChis − 50 per bucket

number of buckets

2 5 10 100

weightedChis − 100 per bucket

number of buckets

2 5 10 100

weightedChis − 200 per bucket

number of buckets

Figure 1: Test results. The rows from top to bottom show graphs for flat, linear and exponential weighting
respectively. The three leftmost columns show graphs for feature selection based on weighted contingencies.
The three columns at the right side show result graphs for feature selection based on weighted χ2’s. The first
and fourth column have 50, second and fifth 100 and third an sixth column 200 examples per time bucket. The
x-axis displays the number of buckets taken into account. The y-axis lists the number of examples classified
correctly. Results are by displayed the amount of documents per bucket (2, 5, 10, 100). Cf. Section 4.1.

Time buckets. Time buckets are filled by collecting exam-
ples as they come in over time and making a new bucket
when a certain limit is reached. An advantage of this ap-
proach is that it automatically allows for fast adaptation
when a lot of documents appear in a short time span, while
a more gradual evolution takes place when fewer documents
are issued.

An alternative way would be to collect all documents pub-
lished in a certain time period (measured in, e.g., seconds or
days). This poses problems when using the χ2 metric as we
are, especially in Equation 3, as χ2 is undefined when, e.g.,
only one document occurs in a bucket. Also, it is not im-
mediately evident what should happen when no documents
occur in one or more buckets.

In our experiments we vary the number of examples per
bucket between 50, 100 and 200. The number of time buck-
ets (i.e., the window size in terms of time buckets) is either
2, 5, 10 or 100.

Feature selection. Based either on Equation 2 or 3 we take
the top n features per class (‘weightedConts’ and ‘weight-
edChis,’ respectively in the graphs above). These features
together comprise the vocabulary used for the multinomial
Naive Bayes classifier. E.g., if we select a maximum of 5

features per class, we end up with 5 · 29 = 145 features at
most (features might overlap).

We empirically determined the optimal number of features
per class to be 7 or 8, yielding up to 203 and 232 features,
respectively. In the experiments presented below we used a
setting with maximally 8 features per class. This number
deviates from what is reported in, e.g., [3] who use 500 fea-
tures in total, though they actually note that “past results
have shown that a few hundreds of words are an appropriate
size of features.”

Adaptation strategies. In our experiments, three adapta-
tion strategies are employed. The baseline approach is to
adapt up until the last training example and remain static
from then on. As noted above, a common approach in re-
search is to allow for adaptation based on gold standard
labels. We refer to this as the ’oracle’ setting. Arguably
the most interesting setting is one in which the classifier
tries to learn from its own predicted labels. This resem-
bles a real world setting where no explicit feedback is avail-
able. As this setting most properly reflects our Time aware
implementation of chi-squared we refer to it as Tai-chi.

Do note that in this adaptive setting updates to the prob-
abilities and the selection of the features are based on all

predicted labels; the ones predicted correctly as well as the
wrong ones. While this poses a threat of drifting in the
wrong direction, the results show that adapting in this man-
ner can lead to improvement over the non-adaptive baseline.

4.2 Results

Baselines. As we can see from the graphs in Figure 1, train-
ing on just one example gives a low baseline (1114 classified
correctly, 21.98%). The adaptive Tai-chi approach (green
transparent triangles) is able to improve over this in almost
all cases. So even though very few of the examples are clas-
sified correctly, the algorithm is able to learn. The baseline
consistently scores higher in the setting where the classi-
fier learns from two examples per class (the opaque data
points), with between 3517 (69.40%) and 3969 (78.31%) in-
stances classified correctly. It is evident from the graphs that
the adaptive runs perform less well when limited history is
taken into account (a small amount of examples per time
buckets and few time buckets). The weighted contingencies
algorithm appears to be most robust to this. The 5 buckets
setting already shows improvements over the baseline with
100 examples per bucket (i.e., a window size of 500 examples
in total) both with flat weighting and with linear weighting.

Our approach. The weighted χ2’s approaches (rightmost
three columns of the graphs in Figure 1) prove to be vulner-
able in settings with limited amounts of buckets and small
bucket size, especially in the adaptive setting with two train-
ing examples (the green opaque triangles). This is because
the χ2 measure is calculated, for every word and class, for
every bucket. If little data is available in a bucket, less re-
liable χ2 scores will be obtained and any choice of features
based on these will suffer from this. This will cause the
classifier to make even more errors, after which the process
repeats.

In the training from two examples setting, the exponential
weighting for the Tai-chi runs leads to improvements over
the baseline in fewer cases than when the other weighting
functions are applied. This is in line with the observation
in [5] that selecting batches works better than weighting
them, even though applying linear weights leads to scores
comparable to the ones with flat weights being applied, in
our tests.

The reason the different decay functions do not appear to
have a large effect might lie in the fact that they are only
being applied for selecting features (rather than weighting
the features themselves). Relative to the total number of
possible features (139,284) we select very few (at most 232
as noted above). Hence it might be that regardless of the
weighting being applied, the same features will be chosen in
all settings.

Another reason, which would also explain the relatively
high scores of the baselines (close to 90% in most settings
where two training examples are used) and their consistency
across different numbers of time buckets and their sizes,
might be that there is in fact no immediate need to adapt
in the material at hand. If concepts do not evolve a lot over
time this would also contribute to the lack of discriminative
power the weighting functions demonstrate.

Oracle runs. As noted earlier, a lot of existing research is
based on classifiers learning from the correct labels. We fol-

lowed this strategy as well (referred to as the ‘oracle’ runs,
the orange squares in Figure 1). These runs always im-
prove over the baseline and can reach high scores (up to
4863 (95.96%) for weighted contingencies, flat weighting, 100
buckets, 50 examples per bucket, and 4862 (95.94%) for the
same settings with linear weighting). The only difference be-
tween the two oracle runs is one example per class in their
initial training material. This explains the high similarity
between their results.
It is interesting to note that in these top scoring cases only
part of the material seen so far is taken into account (not all
as, e.g., in the 100 buckets, 100 examples per bucket case).
This shows that being adaptive over time is beneficial.

5. CONCLUSION AND FUTURE WORK
We have presented two time-aware versions of the χ2 mea-

sure for selecting features for a multinomial Naive Bayes
classifier. Results show that in a setting where little train-
ing material is available (only one or two training examples
per class) the algorithms presented can improve over a non-
adaptive baseline.
Further research will focus on example selection. The gap
between the regular adaptive and oracle runs might be re-
duced by a more considerate adaptation approach. In the ex-
periments reported here, the non-oracle adaptive runs learn
from all examples, whether predicted correctly or erroneously.
This might be improved upon by picking out the most promis-
ing examples or the ones we are most confident about.

Acknowledgments.
This research was partially supported by the European Com-

munity’s Seventh Framework Programme (FP7/2007-2013) un-

der grant agreements nr 258191 (PROMISE Network of Excel-

lence) and 288024 (LiMoSINe project), the Netherlands Organi-

sation for Scientific Research (NWO) under project nrs 640.004.-

802, 727.011.005, 612.001.116, HOR-11-10, the Center for Cre-

ation, Content and Technology (CCCT), the QuaMerdes project

funded by the CLARIN-nl program, the TROVe project funded

by the CLARIAH program, the Dutch national program COM-

MIT, the ESF Research Network Program ELIAS, the Elite Net-

work Shifts project funded by the Royal Dutch Academy of Sci-

ences (KNAW), the Netherlands eScience Center under project

number 027.012.105 and the Yahoo! Faculty Research and En-

gagement Program.

6. REFERENCES
[1] J. Allan. Introduction to topic detection and tracking. In

Topic detection and tracking, pages 1–16. Springer, 2002.
[2] J. Frank, M. Kleiman-Weiner, D. Roberts, F. Niu, C. Zhang,

C. Ré, and I. Soboroff. Building an entity-centric stream
filtering test collection for TREC 2012. In Proceedings of the
21st TREC, 2012.

[3] I. Katakis, G. Tsoumakas, and I. Vlahavas. Dynamic feature
space and incremental feature selection for the classification
of textual data streams. In PKDD, pages 102–116, 2006.

[4] H. J. Kim and J. Chang. Integrating incremental feature
weighting into naive bayes text classifier. In Machine
Learning and Cybernetics, 2007 International Conference
on, volume 2, pages 1137–1143, 2007.

[5] R. Klinkenberg. Learning drifting concepts: Example
selection vs. example weighting. Intelligent Data Analysis, 8
(3):281–300, 2004.

[6] Y. Yiming and J. O. Pedersen. A comparative study on
feature selection in text categorization. In ICML ’97, pages
412–420, 1997.

