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Abstract

The goal of supervised feature selection is to find a subset of input features that are responsible for
predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally
efficient feature selection based on linear dependency between input features and output values. In this paper,
we consider a feature-wise kernelized Lasso for capturing non-linear input-output dependency. We first show
that, with particular choices of kernel functions, non-redundant features with strong statistical dependence
on output values can be found in terms of kernel-based independence measures such as the Hilbert-Schmidt
independence criterion (HSIC). We then show that the globally optimal solution can be efficiently computed;
this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method
is demonstrated through feature selection experiments for classification and regression with thousands of
features.

1 Introduction

Finding a subset of features in high-dimensional supervised learning is an important problem with many real-
world applications such as gene selection frommicroarray data (Xing et al., 2001; Ding and Peng, 2005; Suzuki et al.,
2009; Huang et al., 2010), document categorization (Forman, 2008), and prosthesis control (Shenoy et al., 2008).

1.1 Problem Description

Let X (⊂ R
d) be the domain of input vector x and Y(⊂ R) be the domain of output data1 y. Suppose we are

given n independent and identically distributed (i.i.d.) paired samples,

{(xi, yi) | xi ∈ X , yi ∈ Y, i = 1, . . . , n},

drawn from a joint distribution with density px,y(x, y). We denote the original data by

X = [x1, . . . ,xn] ∈ R
d×n,

y = [y1, . . . , yn]
⊤ ∈ R

n,

where ⊤ denotes the transpose.
The goal of supervised feature selection is to find m features (m < d) of input vector x that are responsible

for predicting output y.

1 Y could be either continuous (i.e., regression) or categorical (i.e., classification). Structured outputs can also be handled in our
proposed methods.
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1.2 Lasso

The least absolute shrinkage and selection operator (Lasso) (Tibshirani, 1996) allows computationally efficient
feature selection based on the assumption of linear dependency between input features and output values.

The Lasso optimization problem is given as

min
α∈Rd

1

2
‖y −X⊤α‖22 + λ‖α‖1,

where α = [α1, . . . , αd]
⊤ is a regression coefficient vector, αk denotes the regression coefficient of the k-th

feature, ‖ · ‖1 and ‖ · ‖2 are the ℓ1- and ℓ2-norms, and λ > 0 is the regularization parameter. The ℓ1-regularizer
in Lasso tends to produce a sparse solution, which means that the regression coefficients for irrelevant features
become zero. Lasso is particularly useful when the number of features is larger than the number of training
samples (Tibshirani, 1996). Furthermore, various optimization software packages were developed for efficiently
computing the Lasso solution (Boyd and Vandenberghe, 2004; Daubechies et al., 2004; Combettes and Wajs,
2005; Kim et al., 2007; Yin et al., 2008; Wright et al., 2009; Tomioka et al., 2011).

However, a critical limitation of Lasso is that it cannot capture non-linear dependency.

1.3 Instance-Wise Non-Linear Lasso

To handle non-linearity, the instance-wise non-linear Lasso was introduced (Roth, 2004), where the original
instance x is transformed by a non-linear function ψ(·) : Rd → R

d′

. Then the Lasso optimization problem is
expressed as

min
β∈Rn

1

2
‖y −Aβ‖22 + λ‖β‖1,

where Ai,j = ψ(xi)
⊤ψ(xj) = A(xi,xj), β = [β1, . . . , βn]

⊤ is a regression coefficient vector, and βj is a coefficient
of the j-th basis A(x,xj).

The instance-wise non-linear Lasso gives a sparse solution in terms of instances, but not features. Therefore,
it cannot be used for feature selection.

1.4 Feature-Wise Non-Linear Lasso (Feature Vector Machine)

To obtain sparsity in terms of features, the feature-wise non-linear Lasso was proposed (Li et al., 2006).
The key idea is to apply a non-linear transformation in a feature-wise manner, not in an instance-wise manner.

More specifically, let us represent the sample matrix X in a feature-wise manner as

X = [u1, . . . ,ud]
⊤ ∈ R

d×n,

where uk = [xk,1, . . . , xk,n]
⊤ ∈ R

n is the vector of the k-th feature for all samples. Then the feature vector
uk and the output vector y are transformed by a non-linear function φ(·) : Rn → R

p. The Lasso optimization
problem in the transformed space is given as

min
α∈Rd

1

2
‖φ(y)−

d∑

k=1

αkφ(uk)‖22 + λ‖α‖1, (1)

where α = [α1, . . . , αd]
⊤ is a regression coefficient vector and αk denotes the regression coefficient of the k-th

feature. By using the kernel trick (Schölkopf and Smola, 2002), Eq.(1) was shown to be equivalently expressed
as the following quadratic programming (QP) problem:

min
α∈Rd

1

2
α⊤Dα,

s.t. ∀k, |α⊤dk −D(uk,y)| ≤
λ

2
, (2)
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Table 1: Feature selection methods.

Method Dependency Optimization Primal/Dual
Scalability w.r.t.

Structured output
# of features

Lasso Linear Convex Primal Highly scalable Not available
mRMR Non-linear Greedy — Scalable Available

Greedy HSIC Non-linear Greedy — Scalable Available
HSFS Non-linear Non-convex — Not scalable Available
FVM Non-linear Non-convex† Dual Not scalable Available

QPFS/KTA Non-linear Non-convex† Dual Not scalable Available
SpAM Additive non-linear Convex Primal Scalable Not available

Proposed Non-linear Convex Primal Highly scalable Available

†In practice, positive constants may be added to the diagonal elements of the Hessian matrix to guarantee the
convexity, although the validity of selected features by this modification is not statistically clear.

where Dk,l = φ(uk)
⊤φ(ul) = D(uk,ul) and D = [d1, . . . ,dd]. This formulation is called the feature vector

machine (FVM). Note, since FVM uses d × d dimensional Hessian matrix D, it is especially useful when the
number of training samples n is much bigger than that of features d.

In the original FVM, mutual information (Cover and Thomas, 2006) was used as the kernel function D(u,u′).
However, the matrix D obtained from mutual information is not necessarily positive definite (Seeger, 2002), and
thus the objective function Eq.(2) can be non-convex. Furthermore, when the number of training samples is
smaller than that of features (which is often the case in high-dimensional feature selection scenarios), the matrix
D is singular. This can cause numerical instability. Another restriction of FVM is that, irrespective of regression
or classification, output y should be transformed by the same non-linear function φ(·) as feature vector u. This
highly limits the flexibility of capturing non-linear dependency. Finally, it is not statistically clear what kind of
features are found by this FVM formulation.

1.5 Contribution of This Paper

To overcome the limitations of FVM, we propose an alternative feature-wise non-linear Lasso. More specifically,
we propose to use particular forms of universal reproducing kernels (Steinwart, 2001) as feature and output
transformations, and solve the optimization problem in the primal space.

An advantage of this new formulation is that the global optimal solution can be computed efficiently. Thus,
it is scalable to high-dimensional feature selection problems. To the best of our knowledge, this is the first convex
feature selection method that is able to deal with high-dimensional non-linearly related features. Furthermore,
this new formulation has a clear statistical interpretation that non-redundant features with strong statistical
dependence on output values are found via kernel-based independence measures such as the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005) and the criterion based on the normalized cross-covariance
operator (NOCCO) (Fukumizu et al., 2008). Thus, the proposed methods can be regarded as a minimum re-
dundancy maximum relevance based feature selection method (Peng et al., 2005). In addition, the proposed
methods are simple to implement, which is a highly preferable property for practitioners.

We also discuss the relation between the proposed method and existing feature selection approaches such
as minimum redundancy maximum relevance (mRMR) (Peng et al., 2005), HSIC-based greedy feature selection
(Song et al., 2012), quadratic programming feature selection (QPFS) (Rodriguez-Lujan et al., 2010), kernel tar-
get alignment (KTA) (Shawe-Taylor and Kandola, 2002; Cortes et al., 2012), Hilbert-Schmidt Feature Selection
(HSFS) (Masaeli et al., 2010), and sparse additive models (SpAM) (Ravikumar et al., 2009; Liu et al., 2009;
Raskutti et al., 2012). See Table 1 for the summary of feature selection methods.

Through experiments on real-world feature selection problems, we show that the proposed methods compare
favorably with existing feature selection methods.
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2 Proposed Methods

In this section, we propose alternative implementations of the non-linear feature-wise Lasso.

2.1 HSIC Lasso

We propose a feature-wise non-linear Lasso of the following form, which we call the HSIC Lasso2:

min
α∈Rd

1

2
‖L̄−

d∑

k=1

αkK̄
(k)‖2Frob + λ‖α‖1,

s.t. α1, . . . , αd ≥ 0, (3)

where ‖ · ‖Frob is the Frobenius norm, K̄(k) = ΓK(k)Γ and L̄ = ΓLΓ are centered Gram matrices, K
(k)
i,j =

K(xk,i, xk,j) and Li,j = L(yi, yj) are Gram matrices, K(x, x′) and L(y, y′) are kernel functions, Γ = In− 1
n
1n1

⊤
n

is the centering matrix, In is the n-dimensional identity matrix, and 1n is the n-dimensional vector with all ones.
Note that we employ non-negativity constraint for α so that meaningful features are selected (see Section 2.2 for
details). In addition, since we use the output Gram matrix L to select features in HSIC Lasso, we can naturally
incorporate structured outputs via kernels. Moreover, we can perform feature selection even if the training data
set consists of input x and its affinity information L such as link structures between inputs.

Differences from the original formulation (1) are that we allow the kernel functions K and L to be different
and the non-negativity constraint is imposed. The first term in Eq.(3) means that we are regressing the output
kernel matrix L̄ by a linear combination of feature-wise input kernel matrices {K̄(k)}dk=1.

2.2 Interpretation of HSIC Lasso

Here, we show that HSIC Lasso can be regarded as a minimum redundancy maximum relevancy (mRMR) based
feature selection method (Peng et al., 2005), which is a popular feature selection strategy in machine learning
and artificial intelligence communities.

The first term in Eq.(3) can be rewritten as

1

2
‖L̄−

d∑

k=1

αkK̄
(k)‖2Frob =

1

2
HSIC(y,y)−

d∑

k=1

αkHSIC(uk,y)

+
1

2

d∑

k,l=1

αkαlHSIC(uk,ul), (4)

where HSIC(uk,y) = tr(K̄(k)L̄) is a kernel-based independence measure called the (empirical) Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005) and tr(·) denotes the trace. HSIC(y,y) is a constant and
can be ignored. HSIC always takes a non-negative value, and is zero if and only if two random variables are
statistically independent when a universal reproducing kernel (Steinwart, 2001) such as the Gaussian kernel is
used. Note that the empirical HSIC asymptotically converges to the true HSIC with O(1/

√
n) (see Theorem 3 in

Gretton et al. (2005)). In addition, HSIC can be regarded as the centered version of the kernel target alignment
(KTA) (Shawe-Taylor and Kandola, 2002).

If the k-th feature uk has high dependence on output y, HSIC(uk,y) takes a large value and thus αk should
also take a large value so that Eq.(3) is minimized. On the other hand, if uk is independent of y, HSIC(uk,y)
is close to zero and thus such αk tends to be eliminated by the ℓ1-regularizer. This means that relevant features
that have strong dependence on output y tend to be selected by HSIC Lasso.

Furthermore, if uk and ul are strongly dependent (i.e., redundant features), HSIC(uk,ul) takes a large value
and thus either of αk and αl tends to be zero. This means that redundant features tend to be eliminated by
HSIC Lasso.

2A MATLABR© implementation of the proposed algorithm is available from http://www.makotoyamada-ml.com/hsiclasso.html.
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Overall, HSIC Lasso tends to find non-redundant features with strong dependence on output y, which is the
idea of minimum redundancy maximum relevancy (mRMR) based feature selection methods (Peng et al., 2005).
This is a preferable property in feature selection.

Note that, it is possible to remove the non-negativity constraint in Eq.(3) and select features that have
non-zero coefficients α. However, if we allow negative values in α, it is hard to interpret selected features.
Indeed, interpretability is one of important properties in feature selection, and thus we include the non-negativity
constraint for HSIC Lasso.

2.3 Kernel Selection

In theory, a universal kernel such as the Gaussian kernel or the Laplace kernel permits HSIC to detect dependence
between two random variables (Gretton et al., 2005). Moreover, it has been proposed to use the delta kernel for
multi-class classification problems (Song et al., 2012). Thus, in this paper, we employ the Gaussian kernel for
inputs. For output kernels, we use the Gaussian kernel for regression cases and the delta kernel for classification
problems.

For input x, we first normalize the input x to have unit standard deviation, and we use the Gaussian kernel:

K(x, x′) = exp

(
− (x− x′)2

2σ2
x

)
,

where σx is the Gaussian kernel width.
In regression scenarios (i.e., y ∈ R), we normalize an output y to have unit standard deviation, and we use

the Gaussian kernel:

L(y, y′) = exp

(
− (y − y′)2

2σ2
y

)
,

where σy is the Gaussian kernel width.
In classification scenarios (i.e., y is categorical), we use the delta kernel for y,

L(y, y′) =

{
1/ny if y = y′,
0 otherwise,

where ny is the number of samples in class y. Note that it is also possible to use the Gaussian kernel in
classification scenarios, but it tends to perform poorly (see Figure 4).

2.4 Computational Properties of HSIC Lasso

An important computational property of HSIC Lasso is that the first term in Eq.(3) can be rewritten as

1

2
‖vec(L̄)− [vec(K̄(1)), . . . , vec(K̄(d))]α‖22,

where vec(·) is the vectorization operator. This is the same form as plain Lasso with n2 samples and d features.
If d > n2 (i.e., high-dimensional feature selection from a small number of training samples), the Lasso

optimization technique called the dual augmented Lagrangian (DAL)3 was shown to be computationally highly
efficient (Tomioka et al., 2011). Because DAL can also incorporate the non-negativity constraint without losing
its computational advantages, we can directly use DAL to solve our HSIC Lasso problem. In contrast, when
n2 ≥ d, we may use the either cKTM or FVM (i.e., dual) formulation.

If the number of samples n is relatively large, the Gaussian kernel computation in HSIC Lasso is expensive.
Therefore, the overall computation cost of HSIC Lasso is high. In addition, since naive implementation of HSIC
Lasso requires n2d memory space, it is not practical if both d and n are large (e.g., d > 10000 and n > 1000).
Here, we propose a table lookup approach to reduce the computation time and memory size.

3http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
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More specifically, based on the fact that the Gaussian kernel values depend only on the difference of two input
values, we normalize every feature x to have mean zero and unit standard deviation and discretize the difference
of two input values into B values (we use B = 4096 in our implementation). Then, we prepare in advance a
lookup table of B elements that contain Gaussian kernel values and refer to these values when we compute the
Gaussian kernels. The centered Gram matrix K̄ can be rewritten as

K̄ = (I − 1

n
11⊤)K(I − 1

n
11⊤)

=K − 1m⊤ −m1⊤ + s11⊤,

where m = 1
n
K1 ∈ R

n and s = 1
n21

⊤K1 ∈ R. Thus, to compute K̄, we only need to store m and s. Namely,
the required memory size for the table lookup based approach is O(dn + B), which is much smaller than the
memory size required for the naive implementation, O(dn2).

Another approach to deal with large sample size would be using stability selection which consists in running
HSIC Lasso many times with subsampling and computing the number of times each feature is selected across
the runs (Meinshausen and Bühlmann, 2010; Bach, 2008).

2.5 Variation: NOCCO Lasso

Instead of K̄(k) and L̄, let us use K̃(k) = K̄(k)(K̄(k) + ǫnIn)
−1 and L̃ = L̄(L̄ + ǫnIn)

−1, where ǫ > 0 is a
regularization parameter. Then our optimization problem is expressed as

min
α∈Rd

1

2

d∑

k,l=1

αkαlD
NOCCO(uk,ul)−

d∑

k=1

αkD
NOCCO(uk,y) + λ‖α‖1,

s.t. α1, . . . , αd ≥ 0,

where DNOCCO(uk,y) = tr(K̃(k)L̃) is the kernel-based dependence measure based on the (empirical) normalized
cross-covariance operator (NOCCO) (Fukumizu et al., 2008). We call this formulation the NOCCO Lasso.

Because DNOCCO was shown to be asymptotically independent of the choice of kernels, NOCCO Lasso is
expected to be less sensitive to the kernel parameter choice than HSIC Lasso, although ǫ needs to be tuned in
practice.

2.6 Other Types of Regularizers

The proposed method is amenable to most of the popular regularizers such as group-lasso and elastic-net regu-
larizers (Meier et al., 2008; Zou and Hastie, 2005), as well as to other feature selection problems. For example,
the group-lasso regularizer can be easily incorporated into our framework as

min
α∈Rd

1

2
‖L̄−

d∑

k=1

αkK̄
(k)‖2Frob + λ

G∑

g=1

‖αg‖2,

s.t. α1, . . . , αd ≥ 0,

where α = [α⊤
1 , . . . ,α

⊤
G]

⊤, αg is the gth group of variables, and G is the number of groups. This group-lasso
problem can also be efficiently solved by the DAL package with the non-negativity constraint.

2.7 Relation to Two-Stage Multiple Kernel Learning

The proposed method is closely related to the two-stage multiple kernel learning (MKL) method called centered
kernel target alignment (cKTA) (Cortes et al., 2012), which has been originally proposed for learning a kernel
Gram matrix (not used for feature selection problems).
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If we adopt cKTA for supervised feature selection problems, the optimization problem of cKTA can be written
as

min
α∈Rd

1

2

d∑

k,l=1

αkαlHSIC(uk,ul)−
d∑

k=1

αkHSIC(uk,y)

s.t. α1, . . . , αd ≥ 0.

Differences from the HSIC Lasso are that cKTA solve the optimization problem in the dual space and does not
have the ℓ1 regularization term.

An advantage of cKTA is that feature selection can be performed just by solving a non-negative least-
squares problem. Moreover, since cKTA has d× d dimensional Hessian matrix (Dkl = HSIC(uk,ul)), cKTA is
computationally efficient for feature selection problems with large n and small d. However, the Hessian matrixD
is not necessarily positive definite (Seeger, 2002) and is singular in high-dimensional problems. More specifically,
D can be written as

D=[vec(K̄(1)),. . ., vec(K̄(d))]⊤[vec(K̄(1)),. . ., vec(K̄(d))],

andD is singular when d > n2 (i.e., high-dimensional feature selection from a small number of training samples).
Thus, solving the non-negative least-squares problem in high-dimensional feature selection problems can be
cumbersome in practice.

For the above reason, the proposed feature selection method is more suited than cKTA for high-dimensional
feature selection problems. In contrast, if we want to solve a small d and large n feature selection problem, cKTA
is more suited than the HSIC Lasso.

3 Existing Methods

In this section, we review existing feature selection methods and discuss their relation to the proposed approach.
See Table 1 for the summary of feature selection methods.

3.1 Minimum Redundancy Maximum Relevance (mRMR)

Minimum redundancy maximum relevance (mRMR) (Peng et al., 2005) is a mutual information based feature
selection criterion.

Let V = [v1, . . . ,vm]⊤ ∈ R
m×n be a sub-matrix ofX = [u1, . . . ,ud]

⊤ ∈ R
d×n, wherem features are extracted

from d features. Then mRMR for V is defined as follows:

mRMR(V ) =
1

m

m∑

k=1

M̂I(vk,y)−
1

m2

m∑

k,l=1

M̂I(vk,vl), (5)

where M̂I(v,y) is an empirical approximator of mutual information given as

M̂I(v,y) =

∫∫
p̂v,y(v,y) log

p̂v,y(v,y)

p̂v(v)p̂y(y)
dvdy.

p̂v,y,(v,y) denotes a Parzen window estimator of the joint density of v and y, and p̂v(v) and p̂y(y) denotes
Parzen window estimators of marginal densities of v and y, respectively.

The first term in mRMR measures the dependency between chosen feature vk and output y, while the
second term is a penalty for selecting redundant features. Thus, mRMR finds non-redundant features with
strong dependence on outputs. A very fast implementation of mRMR available, and thus, it can deal with
high-dimensional feature selection problems.

mRMR-based feature selection is performed by finding a sub-matrix V that maximizes Eq.(5). However,
since there are 2d possible feature subsets, the brute force approach is computationally intractable. Hence,
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greedy search strategies such as forward selection/backward elimination are used in practice (Peng et al., 2005).
However, the greedy approaches tend to produce a locally optimal feature set.

Another potential weakness of mRMR is that mutual information is approximated by Parzen window estimation—
Parzen window based mutual information estimation is unreliable when the number of training samples is small
(Suzuki et al., 2009).

3.2 Greedy Feature Selection with HSIC

The HSIC-based feature selection criterion (Song et al., 2012) is defined as

tr(M̄L̄), (6)

where M̄ = ΓMΓ is a centered Gram matrix, Mi,j = M(vi,vj) is a Gram matrix, M(v,v′) is a kernel function,
and (v1, . . . ,vm) = V ∈ R

m×n.
HSIC-based greedy feature selection is performed by finding a sub-matrix V that maximizes Eq.(6). An

advantage of HSIC-based feature selection is its simplicity; it can be implemented very easily. However, since the
maximization problem Eq.(6) is NP-hard, forward selection/backward elimination strategies are used for finding
a locally optimal solution in practice (Song et al., 2012).

3.3 Hilbert-Schmidt Feature Selection (HSFS)

Hilbert-Schmidt feature selection (HSFS) (Masaeli et al., 2010) is defined as

min
W∈Rd×d

−HSIC(WX,y) + λ

d∑

j=1

‖wj‖∞,

where W = [w1, . . . ,wd] is a transformation matrix, λ > 0 is the regularization parameter, and ‖ · ‖∞ is the
ℓ∞-norm.

HSFS can be regarded as a continuously relaxed version of the HSIC-based feature selection (Song et al.,
2012). Thanks to this continuous formulation, the HSFS optimization problem can be solved by limited-memory
BFGS (L-BFGS) (Nocedal and Wright, 2003). However, since HSFS is a non-convex method, restarting from
many different initial points would be necessary to select good features, which is computationally expensive.
Moreover, HSFS attempts to optimize a projection matrix which has d2 parameters. That is, following the
original HSFS implementation based on a Quasi-Newton method, the total computational complexity of HSFS
is O(d4), which can be unacceptably large in high-dimensional feature selection problems. To reduce the compu-
tational cost, it may be able to approximately solve the HSFS optimization problem by reducing the size of the
transformation matrix to d× q for q ≪ d. However, this approximation leads to an additional tuning parameter
that can not be chosen objectively.

3.4 Quadratic Programming Feature Selection (QPFS)

Quadratic programming feature selection (QPFS) (Rodriguez-Lujan et al., 2010) tries to find features by solving
a QP problem.

The QPFS optimization problem is defined as

min
θ∈Rd

(1− γ)

2
θ⊤Dθ − γθ⊤d,

s.t.

d∑

k=1

θk = 1, θ1, . . . , θd ≥ 0,

where θ = [θ1, . . . , θd]
⊤, Dk,l = D(uk,ul), d = [D(u1,y), . . . , D(ud,y)]

⊤, D(·) is a dependency measure, and
γ ∈ [0, 1] is a tuning parameter. In QPFS, an empirical estimator of mutual information is used as a dependency
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measure. Note that if we employ HSIC as a dependency measure in QPFS and remove the sum-to-one constraint,
QPFS is equivalent to the centered KTA (cKTA) (Cortes et al., 2012), which is a multiple kernel learning method
and has been originally proposed for learning a kernel matrix (see Section 2.7 for details).

Similar to cKTA, an advantage of QPFS is that feature selection can be performed just by solving a QP
problem. Moreover, since QPFS has d × d dimensional Hessian matrix, QPFS is computationally efficient for
feature selection problems with large n and small d. However, the Hessian matrix D is not necessarily positive
definite (Seeger, 2002) and is singular in high-dimensional problems.

3.5 Sparse Additive Models (SpAM)

The sparse additive models (SpAM) is useful for high-dimensional feature selection (Ravikumar et al., 2009;
Liu et al., 2009; Raskutti et al., 2012; Suzuki and Sugiyama, 2013).

The SpAM optimization problem can be expressed as

min
β1,...,βd∈Rn

‖y−
d∑

k=1

K(k)βk‖22 + λ

d∑

k=1

√
1

n
‖K(k)βk‖22,

where βk = [βk,1, . . . , βk,n]
⊤, k = 1, . . . , d are regression coefficient vectors, βk,j is a coefficient for

[K(xk,1, xk,j), . . . ,K(xk,n, xk,j)]
⊤, and λ > 0 is a regularization parameter. This problem can be efficiently

solved by the back-fitting algorithm (Ravikumar et al., 2009). Note that SpAM is closely related to the hi-
erarchical multiple kernel learning (Bach, 2009), which employs a sparse additive model with an alternative
sparsity-inducing regularizer.

An advantage of SpAM is that it is a convex method and can be efficiently optimized by the backfitting
algorithm. Moreover, statistical properties of the SpAM estimator are well studied (Ravikumar et al., 2009).
A potential weakness of SpAM is that it can only deal with additive models. That is, if data follows a non-
additive model, SpAM may not work well (see Figure 1(b)). Another weakness of SpAM is that it needs to
optimize nd variables, while the proposed methods contain only d variables. Thus, SpAM optimization tends to
be computationally more expensive than the proposed methods. Finally, an output y should be a real number
in SpAM, meaning that SpAM cannot deal with structured outputs such as multi-label and graph data.

4 Experiments

In this section, we experimentally investigate the performance of the proposed and existing feature selection
methods using synthetic and real-world datasets.

4.1 Setup

We compare the performance of the proposed methods with mRMR (Peng et al., 2005), QPFS
(Rodriguez-Lujan et al., 2010), cKTA (Cortes et al., 2012), forward selection with HSIC (FHSIC), FVM
(Li et al., 2006), and SpAM4 (Ravikumar et al., 2009). Note that, since it has been reported that the per-
formance of FHSIC is comparable to HSFS and HSFS is computationally expensive for high-dimensional data,
we decided to only compare the proposed method to FHSIC. For FVM, QPFS, and mRMR, the C++ imple-
mentation of a mutual information estimator5 is used. Then, a QP solver SeDuMi6 is used to solve the FVM
and QPFS optimization problems. We observed that the matrices D in FVM, QPFS, and cKTA tend not to
be positive definite. In our experiments, we added a small constant to the diagonal elements of D so that the
objective function becomes convex. For all experiments, we set λ = 1 in FVM, γ = 0.5 in QPFS and cKTA, and
ǫ = 10−3 in NOCCO Lasso. For proposed methods, we experimentally use σx = 1.

4We thank the authors of (Ravikumar et al., 2009) for providing us the code used in their paper.
5http://penglab.janelia.org/proj/mRMR/
6http://sedumi.ie.lehigh.edu/
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Table 2: Summary of real-world datasets.
Type Dataset # features (d) # samples (n) # Classes

Image AR10P 2400 130 10
PIE10P 2400 210 10
PIX10P 10000 100 10
ORL10P 10000 100 10

Microarray TOX 5748 171 4
CLL-SUB 11340 111 3

4.2 Synthetic Datasets

First, we illustrate the behavior of the proposed HSIC Lasso and NOCCO Lasso using the following two synthetic
datasets:

(a) Data1 (Additive model):

Y = −2 sin(2X1) +X2
2 +X3 + exp(−X4) + E,

where (X1, . . . , X256)
⊤ ∼ N(0256, I256) and E ∼ N(0, 1). Here, N(µ,Σ) denotes the multi-variate Gaussian

distribution with mean µ and covariance matrix Σ.

(b) Data2 (Non-additive model):
Y = X1 exp(2X2) +X2

3 + E,

where (X1, . . . , X1000)
⊤ ∼ N(01000, I1000) and E ∼ N(0, 1).

Figure 1 shows the feature selection accuracy of each method over 30 runs as functions of the number of
samples, where the accuracy is measured by the fraction of correctly selected features under the assumption
that the number of true features is known. As the figure clearly shows, the proposed HSIC Lasso and NOCCO
Lasso methods select good features in both additive and non-additive model cases. SpAM also works very well
for Data1, but it performs poorly for Data2 because the additivity assumption is violated in Data2. QPFS and
FVM behave similarly, but they tend to be outperformed by the proposed methods.

Next, we compare the computation time of each method. Here, we change the number of features in Data2
to d = 100, 200, . . . , 1000, while we fix the number of samples to n = 100. Figure 1-(c) shows the average
computation time for each method over 30 runs. As can be observed, the computation time of HSIC Lasso and
NOCCO Lasso increases mildly with respect to the number of features compared to that of SpAM, FVM, and
QPFS. Figure 1-(d) shows the average computation time of HSIC Lasso for 30 runs. In this experiment, we use
the table lookup trick for HSIC Lasso to deal with a relatively large number of samples. This shows that the
lookup trick allows us to handle relatively large datasets.

4.3 Real-World Datasets

Next, we compare the performance of feature selection methods using real-world datasets.

4.3.1 Multi-Class Classification

We use four image datasets and two microarray datasets7. Detailed information of the datasets is summarized
in Table 2.

In this experiment, we use 80% of samples for training and the rest for testing. We repeat the experiments
100 times by randomly shuffling training and test samples, and evaluate the performance of feature selection
methods by the average classification accuracy. We use multi-class ℓ2-regularized kernel logistic regression (KLR)
(Hastie et al., 2001; Yamada et al., 2010) with the Gaussian kernel for evaluating the classification accuracy when

7http://featureselection.asu.edu/datasets.php
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(a) Data1 (Additive model)
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(b) Data2 (Non-additive model)
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Figure 1: (a),(b): Feature selection results for artificial datasets over 30 runs. The horizontal axis denotes the
number of training samples, and the vertical axis denotes the fraction of correctly selected features. In HSIC
Lasso and NOCCO Lasso, the regularization parameter λ is set so that the number of non-zero coefficients
is in {d∗, d∗ + 1, . . . , d∗ + 10} where d∗ is the number of true features. Then, we use top d∗ features by
ranking regression coefficients. In QPFS, FVM, and SpAM, we use top d∗ features by ranking coefficients. (c):
Comparison of computation time for Data2. The horizontal axis denotes the number of entire features d, and
the vertical axis denotes the computation time in log-scale. (d): Comparison of computation time for Data2 for
HSIC Lasso. The horizontal axis denotes the number of training samples n, and the vertical axis denotes the
computation time in log-scale.

the top m = 10, 20, . . . , 50 features selected by each method are used. In this paper, we first choose 50 features
and then use top m = 10, 20, . . . , 50 features having the largest absolute regression coefficients. In KLR, all
tuning parameters such as the Gaussian width and the regularization parameter are chosen based on 3-fold
cross-validation.
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Figure 2: Mean classification accuracy for real-world data. The horizontal axis denotes the number of selected
features, and the vertical axis denotes the mean classification accuracy.

We also investigate the redundancy rate (RED) (Zhao et al., 2010)8,

RED =
1

m(m− 1)

∑

uk,uj ,k>l

|ρk,l|,

where ρk,l is the correlation coefficient between the k-th and l-th features. A large RED score indicates that
selected features are more strongly correlated to each other, that is, many redundant features are selected. Thus,
as a feature selection method, a small redundancy rate is preferable.

Results: Figure 2 shows the mean classification accuracy over 100 runs as functions of the number of selected
features. Table 3 shows the average classification accuracy rates for the top m = 50 features selected by each
method. In this experiment, since the computation cost of FVM was too high for datasets with a large number
of features, we only included the FVM results for the datasets with a small number of features (i.e., AR10P,
PIE10P, and TOX). The graphs in Figure 2 clearly show that HSIC Lasso and NOCCO Lasso compare favorably
with existing methods for the image datasets (i.e., AR10P, PIE10P, PIX10P, and ORL10P) in terms of the
classification accuracy, and they are comparable to existing methods for the microarray datasets (i.e., TOX and
CLL-SUB).

Table 4 shows the RED values for the top m = 50 features selected by each method. As can be observed,
HSIC Lasso and NOCCO Lasso tend to have smaller RED values, and thus they select less redundant features.

Role of the Gaussian Width and the Output Kernel: In the proposed methods, the Gaussian width and
the output kernel L(y, y′) must be chosen manually. We carried out a set of experiments to show the sensitivity

8The original redundancy rate was defined with a plain correlation coefficient (Pearson, 1920), not the absolute correlation
coefficient (Zhao et al., 2010). However, this is not appropriate as an error metric because negative correlation decreases RED. For
this reason, we decided to use the absolute correlation coefficient.
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Table 3: Mean classification accuracy (with standard deviations in brackets) for real-world data.

Dataset
HSIC NOCCO

SpAM FVM mRMR QPFS cKTA FHSIC
Lasso Lasso

AR10P .848 (.111) .846 (.111) .551 (.109) .795 (.121) .745 (.136) .743 (.137) .709 (.207) .773 (.122)
PIE10P .971 (.032) .972 (.031) .898 (.109) .955 (.062) .895 (.118) .952 (.067) .884 (.218) .908 (.091)
PIX10P .964 (.043) .964 (.042) .857 (.146) — (—) .769 (.124) .924 (.067) .920 (.090) .920 (.100)
ORL10P .938 (.068) .941 (.066) .669 (.120) — (—) .782 (.138) .884 (.096) .848 (.140) .788 (.132)
TOX .781 (.119) .788 (.113) .691 (.087) .686 (.085) .709 (.084) .769 (.077) .804 (.110) .715 (.087)
CLL-SUB .768 (.087) .769 (.084) .524 (.112) — (—) .640 (.098) .760 (.116) .709 (.104) .732 (.141)

Table 4: Mean redundancy rate (with standard deviations in brackets) for real-world data.

Dataset
HSIC NOCCO

SpAM FVM mRMR QPFS cKTA FHSIC
Lasso Lasso

AR10P .196 (.028) .195 (.028) .255 (.036) .260 (.039) .268 (.038) .217 (.050) .235 (.034) .350 (.091)
PIE10P .135 (.014) .139 (.017) .250 (.042) .193 (.029) .225 (.036) .183 (.026) .155 (.021) .285 (.059)
PIX10P .177 (.023) .174 (.023) .388 (.105) — (—) .200 (.066) .286 (.057) .198 (.036) .348 (.064)
ORL10P .192 (.026) .191 (.025) .300 (.047) — (—) .294 (.095) .204 (.032) .191 (.034) .225 (.045)
TOX .382 (.027) .381 (.027) .391 (.028) .422 (.031) .386 (.032) .384 (.028) .371 (.040) .396 (.036)
CLL-SUB .344 (.034) .345 (.034) .403 (.058) — (—) .328 (.039) .322 (.033) .281 (.050) .352 (.061)
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Figure 3: Mean classification accuracy of HSIC Lasso with different Gaussian widths. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean classification accuracy.

of choosing the Gaussian width and the output kernel in Figures 3 and 4. Note that, since the performance of
HSIC Lasso and NOCCO Lasso are comparable, we here only evaluate HSIC Lasso. As can be seen in Figure 3,
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Figure 4: Mean classification accuracy of HSIC Lasso with different output kernels. Here, we use the delta
kernel and the Gaussian kernel. The horizontal axis denotes the number of selected features, and the vertical
axis denotes the mean classification accuracy.

the proposed method is not so sensitive to the Gaussian width. From the output kernel comparison in Figure 4,
we found that HSIC Lasso with delta kernel clearly outperforms that with Gaussian kernel. Thus using different
input and output kernels is important for feature selection in classification scenarios.

4.3.2 High-Dimensional Regression

We also evaluate our proposed method with the Affymetric GeneChip Rat Genome 230 2.0 Array data set
(Scheetz et al., 2006). The data set consists of 120 rat subjects with 31098 genes which were measured from eye
tissue. Similar to Huang et al. (2010), we focus on finding genes that are related to the TRIM32 gene, which
was recently found to cause the Bardet-Biedl syndrome. Note that, since TRIM32 takes real values, this is a
regression problem.

In this experiment, we use 80% of samples for training and the rest for testing. We repeat the experiments
100 times by randomly shuffling training and test samples, and evaluate the performance of feature selection
methods by the mean squared error. In addition, we use the correlation coefficient between the predicted and
the true TRIM32 values, which is a popular performance metric in biology community. We use kernel regression
(KR) (Schölkopf and Smola, 2002) with the Gaussian kernel for evaluating the mean squared error and the mean
correlation when the top m = 10, 20, . . . , 50 features selected by each method are used. We first choose 50
features and then use top m = 10, 20, . . . , 50 features having the largest absolute regression coefficients. In KR,
all tuning parameters such as the Gaussian width and the regularization parameter are chosen based on 3-fold
cross-validation.

Results: Figure 5 shows the mean squared error and the mean correlation coefficient over 100 runs as functions
of the number of selected features. As can be observed, the proposed HSIC Lasso and NOCCO Lasso compare
favorably with existing methods.
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Figure 5: (a): Mean squared error for the biology data. The horizontal axis denotes the number of selected
features, and the vertical axis denotes the mean squared error. Here, we use the kernel parameter σx = 1.0
for both HSIC Lasso and NOCCO Lasso. (b),(c): Mean squared error of HSIC Lasso and NOCCO Lasso with
respect to different kernel parameters. (d): Mean correlation for the biology data. The horizontal axis denotes
the number of selected features, and the vertical axis denotes the mean correlation. (e),(f): Mean correlation
coefficient of HSIC Lasso and NOCCO Lasso with respect to different kernel parameters. The average redundancy
rate of HSIC Lasso, NOCCO Lasso, mRMR, and Lasso are 0.44, 0.45, 0.42, and 0.43.

5 Conclusion

In this paper, we proposed novel non-linear feature selection methods called HSIC Lasso and NOCCO Lasso.
In the proposed methods, global optimal solutions can be obtained by solving a Lasso optimization problem
with a non-negativity constraint, which can be efficiently performed by the dual augmented Lagrangian al-
gorithm (Tomioka et al., 2011). Furthermore, the proposed methods have clear statistical interpretation that
non-redundant features with strong statistical dependence on output values can be found via kernel-based inde-
pendence measures (Gretton et al., 2005; Fukumizu et al., 2008). We applied the proposed methods to real-world
image and biological feature selection tasks, and experimentally showed that they are promising.

The usefulness of the proposed method will be further investigated on more real-world applications such as
computer vision, bioinformatics, and speech and signal processing in the future work. Moreover, extending the
proposed model to multi-task learning and prediction and investigating theoretical properties of the proposed
formulation are important issues to be investigated.
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