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Abstract. Linearizable objects (data-structures) provide operations
that appear to execute atomically. Modern mainstream languages pro-
vide many linearizable data-structures, simplifying concurrent program-
ming. In practice, however, programmers often find a need to execute a
sequence of operations (on linearizable objects) that executes atomically
and write extended operations for this purpose. Such extended operations
are a common source of atomicity bugs.

This paper focuses on the problem of verifying that a set of exten-
sion operations (to a linearizable library) are themselves linearizable. We
present several reduction theorems that simplify this verification problem
enabling more efficient verification.

We first introduce the notion of an encapsulated extension: this is
an extension that (a) does not introduce new shared state (beyond the
shared state in the base linearizable library), and (b) accesses or mod-
ifies the shared state only through the base operations. We show that
encapsulated extensions are widely prevalent in real applications.

We show that linearizability of encapsulated extended operations can
be verified by considering only histories with one occurrence of an ex-
tended operation, interleaved with atomic occurrences of base and ex-
tended operations. As a consequence, this verification needs to consider
only histories with two threads, whereas general linearizability verifica-
tion requires considering histories with an unbounded number of threads.

We show that when the operations satisfy certain properties, each
extended operation can be verified independently of the others, enabling
further reductions.

We have implemented a simple static analysis algorithm that conser-
vatively verifies linearizabilty of encapsulated extensions of Java concur-
rent maps. We present empirical results illustrating the benefits of the
reduction theorems.
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1 Introduction

Concurrent programs are challenging to write. To ease the programmer’s burden,
modern programming platforms provide libraries of efficient concurrent data
structures. These libraries provide operations that are guaranteed to be atomic,
while hiding the complexity of the implementation from clients.

Unfortunately, clients often need to atomically perform some computation
that may invoke multiple library operations. Programmers end up extending
a linearizable data type by defining new custom atomic operations, which we
refer to as extended operations. Figure 1 and Figure 2 are real world examples of
linearizable operations that extend the Java ConcurrentMap interface. As shown
in [1], such extended operations are a common source of concurrency bugs. In
this paper, we consider the problem of verifying the correctness of an extension
of a linearizable data-structure. Specifically, we wish to verify that the extension
of the data-structure is linearizable [2].

Encapsulated Extension. In this paper, we identify a restricted class of exten-
sions of a data-structure, inspired by the examples in [1]. This class is realistic
and includes many commonly found extensions. As we show, this class is also
amenable to more efficient verification. An extension is said to be encapsulated
if it satisfies the following two restrictions:

Encapsulation. The extension methods do not directly access or modify any
global (shared) state. Instead, extension methods access shared state only
via operations of the underlying data-structure that is being extended.

Open Environment. All of the operations of the underlying data-structure
are exposed to the clients: i.e., none of the underlying operations are hidden
by the extension.

A Simple Verification Approach. Informally, an execution in which multiple
threads invoke a data-structure’s operations concurrently is said to be lineariz-
able if each invoked operation appears to execute instantaneously, with the result
that the data-structure’s operations appear to be executed sequentially (with-
out any overlap). The data-structure is said to be linearizable if all possible
concurrent executions involving the data-structure are linearizable.

Consider a data-structure with core methods m1, . . . ,mn that has been ex-
tended by adding extension methods em1, . . . , emk. We can verify that the ex-
tended ADT is linearizable by considering all executions of the following “driver”
program, and verifying that each of these executions is linearizable (We write
s1|s2 to indicate that either s1 or s2 may be executed non-deterministically). For
simplicity we have omitted parameters and return-values in this code template.
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Val computeIfAbsent(Key k) {
Val temp1, temp2 ;
temp1 = this.get(k) ;
if (temp1 == null) {
temp2 = hardLocalPureStateComputation(k) ;
temp1 = this.putIfAbsent(k, temp2) ;
if (temp1 == null) temp1 = temp2 ;

}
return temp1 ;

}

Fig. 1. A linearizable operation that extends Java ConcurrentMap. The pure com-
putation can be, for example if k is an integer, evaluating the square of k. The get

operation in ConcurrentMap returns the value mapped from the given key (initialized
to null). The putIfAbsent operation in ConcurrentMap atomically checks whether
the given key is mapped to null: if it is mapped to null, the operation immediately
maps the key to the given value and returns null, otherwise the operation returns the
non-null value that the key is mapped to without changing the map.

void inc(Class<?> key) {
for (;;) {
Integer i = this.get(key);
if (i == null) {
if (this.putIfAbsent(key, 1) == null) return;

} else {
if (this.replace(key, i, i + 1)) return;

}
}

}

Fig. 2. An extended encapsulated operation over Java ConcurrentMap from
OpenJDK 7 , class: ThrowingTasks. The replace operation atomically checks whether
the given key is mapped to the first value: if it is mapped to that value, the opera-
tion immediately remaps the key to the second value and returns true, otherwise the
operation returns false without changing the map.

while (∗) do {
create new thread to execute {
while (∗) do {
m1() | · · · | mn() | em1() | · · · | emk();

}
}

}



314 O. Zomer et al.

Incremental Verification. Suppose the core ADT (consisting only of the core
methods) is known to be linearizable. We can then exploit this to simplify the
driver program as shown below, replacing each call to a core method mi by
“atomic si”, where si is the sequential specification for mi. (Note that this
replacement is done within the code for any extension method emj as well, even
though that is not shown below.)

while (∗) do {
create new thread to execute {
while (∗) do {
atomic {s1()} | · · · | atomic{sn()} | em1() | · · · | emk();

}
}

}
Note that this reduction is valid only because of the “encapsulation” assumption
stated earlier. If the code for extended operations directly accesses or manipu-
lates the shared state (of the underlying data-structure), this reduction is invalid.
However, accessing this shared state via the core operations is fine.

Reduction to Two Threads. As we show in the paper, it is not necessary to
consider all executions of the preceding driver program. Using induction, we show
that it suffices to consider a single occurrence of any one extended operation and
replace other occurrences of an extended operation emi by an atomic execution of
its sequential specification esi. If the implementations and specifications do not
depend on thread identifiers (such as Java ThreadLocal class), we can rewrite the
driver program so that it contains only two threads (since all atomic executions
of operations can be treated as executed by the same thread). This gives us the
following simplified driver program:

// Thread 1 (Environment thread)
while (∗) do {
atomic { s1() } | · · · | atomic { sn() } | atomic { es1() } | · · · | atomic { esk() };
}
||
// Thread 2 (Nonatomic extension method)
{ em1() | · · · | emk(); }
Note that such a reduction is not possible for general linearizability verifica-
tion. Consider the simple example shown in Figure 3, which is not linearizable.
However, all histories of this example with less than K threads are linearizable.
Hence, the verifier will find a counterexample only when it considers executions
with K threads.

Proving linearizability is intractable even for finite systems, in general [3].
However, bounding the number of threads reduces the complexity of lineariz-
ability verification (see [3]).

Further Reductions. We then describe additional conditions (explained later)
that, when satisfied, allow us to verify the linearizability of the extension opera-
tions em1 to emk independent of each other. These conditions, in fact, allow us
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to verify the linearizability of the executions produced by the following driver
program, for each i, independently.

// Environment thread
while (∗) do {
atomic { s1() } | · · · | atomic { sn() };

}
||
// One nonatomic extension method:
{ emi() }

Such a reduction is not always valid, even when we have only one extension
operation, as demonstrated by the example in Figure 4. This extension method
sets a boolean register to true and returns the original value. This method is
not linearizable. Assume that the initial value of the register is false and that
there are two concurrent invocations of the extension method. It is possible
for both invocations to return a value of false, which is not possible in any
sequential execution. However, any execution that contains only one occurrence
of the extension method (along with any number of occurrences of the core
methods read and write) can be shown to be linearizable.

int s = 0;
// Specifications:
// return value must be true.
// K is a constant value larger
// than 1.
boolean incReadAssertDec() {
s++;
boolean b = (s < K);
s−−;
return b;

}

Fig. 3. A simple example of a method
which is linearizable for up to K

threads. (we assume that the opera-
tions on s are atomic.)

boolean readAndWriteTrue() {
boolean temp = this.read() ;
if (!temp) {
this.write(true) ;

}
return temp ;

}

Fig. 4. An extension of the interface
of a boolean register. The base object
has a boolean value and two atomic
base-operations: read() that returns
the boolean value and write(x) that
overwrites it and returns nothing. This
encapsulated extended operation is an
incorrect implementation of a simple
test-and-set operation.

Empirical Evaluation. Java’s concurrent maps are widely used, not surprisingly,
since they are a higher-level shared memory abstraction. Our empirical study
shows that encapsulated extensions over maps are widely used, and that the re-
ductions described above are applicable to many of these extensions, simplifying
the verification. We have implemented a static checker for verifying linearizabil-
ity of encapsulated extensions of the Java concurrent map.

However, we did not find encapsulated extensions over other interesting data
structures, such as queues, stacks and deques, in which non-linearizability might
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cause errors. The implementations of these data-structures, such as Java Con-
currentLinkedQueue and ConcurrentLinkedDeque, do not provide methods for
“conditional modifications” like ConcurrentMap’s putIfAbsent and replace.
For this reason, in most real-world scenarios, the programmer must call exter-
nal synchronization mechanisms (such as locks and transactions) in order to
implement linearizable extensions. This type of extensions contradicts our En-
capsulation requirement and therefore it is not in the range of this paper. On
the other hand, if those data structures had provided base operations for “con-
ditional modifications”, we could write interesting encapsulated extensions on
top of them, as demonstrated in [4].

2 Concurrent Objects and Linearizability

In this section we review standard terminology relating to concurrent objects
(without extended operations) and linearizability (as in [2]).

A concurrent execution of an object is modeled by a history, which is a finite
sequence of method invocation and response events. We write a method invoca-
tion as [t.m(arg) where t is a thread name, m is a method name and arg denotes
the values of actual argument values of the method. We write a method response
as ]t.m/b where t is a thread name, m is a method name and b is the return
value. We sometimes write t.m(arg)/b instead of writing the sequence of the two
events [t.m(arg) , ]t.m/b (this is used as a short way to represent an invocation
which is immediately followed by its corresponding response). For convenience,
we assume that a unique identifier is attached to every event in a history.

A response matches an invocation if they have the same thread name and
the same method name. A method call in a history h is a pair consisting of an
invocation and the next matching response in h. An invocation is pending in h
if no matching response follows the invocation. complete(h) is the subsequence
of h consisting of all non-pending invocations and all responses. A history h is
complete if h = complete(h).

A history h is sequential if the first event of h is an invocation, and each invo-
cation, except possibly the last, is immediately followed by a matching response.

A thread subhistory h|t of history h is the subsequence of all events in h whose
thread names are t. Two histories h and h′ are equivalent if for every thread t,
h|t = h′|t.
Definition 1 (well formed history). A history h is well formed if each thread
subhistory of h is sequential.

We assume that all histories that represent object executions are well formed
— because, given a concurrent object x, well formed histories represent all rea-
sonable behaviors of x (see [2]).

Definition 2 (Linearization of a history). We say that a sequential history s
is a linearization of a history h, if there exists a history h′ such that the following
conditions are satisfied:
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– h′ is constructed by appending zero or more responses to h.
– complete(h′) is equivalent to s.
– If a response event e precedes an invocation event e′ in h, then the same is

true in s.

Definition 3 (Sequential Specification). A sequential specification of a con-
current object is a set of sequential histories.

A sequential specification is used to describe the legal behaviors of an object
in the absence of concurrency.

Definition 4 (Linearizable Object). We say that an object x is linearizable
with respect to a sequential specification S, if for any feasible history h of x there
exists s ∈ S, such that s is a linearization of h.

Note that, from the above definition, if x is linearizable with respect to S then
any feasible sequential history of x is in S. Furthermore, intuitively, any feasible
history of x can be seen as a history in which each method call is atomic.

3 Linearizability of Encapsulated Extensions

In this section we generalize the model from Section 2 for encapsulated exten-
sions of a linearizable object and present our reduction theorem for proving
linearizablity of encapsulated extensions.

3.1 The Problem

Let Base be a specification describing a (base) linearizable object. An encap-
sulated extension of Base consists of a set of extension methods (including
their implementation). The only global (shared) state accessed by the extension
methods is the state of Base, which can be accessed only via the methods of
Base.

Extended Histories. Consider an execution of an arbitrary concurrent client pro-
gram that uses the extended object. For our purposes, it suffices to focus on the
invocation and response events of the (base and extended) operations of the ob-
ject. Hence, we model an execution of the object by an extended-history, defined
to be a finite sequence of method invocation and response events in which the
events can be divided into two types:
(i) basic events : represent invocations and responses of base methods of the given
object ;
(ii) extension events : represent invocations and responses of the extended
methods.
Each event in an extended-history is either a basic event or an extension event
(and not both). As in Section 2, we assume that a unique identifier is attached
to each event in an extended-history.

Figure 5 shows an example for 3 extended histories. In this figure, the events
that refer to the inc method are extension events and the other events are basic
events.



318 O. Zomer et al.

h
:
[ t

1
.i
n
c
(
c
)
,
t 1
.g
e
t(
c
)/

n
u
ll
,
t 2
.p
u
t(
c
,
7
)/

n
u
ll
,
t 1
.p
u
tI
fA

b
se

n
t(
c
,
1
)/

7
,
t 1
.g
e
t(
c
)/

7
,
t 1
.r
e
p
la
ce

(c
,
7
,
8
)/

tr
u
e
,
] t

1
.i
n
c
/
∅,

t 2
.g
e
t(
c
)/

8

c
li
e
n
t(
h
):

[ t
1
.i
n
c
(
c
)
,

t 2
.p
u
t(
c
,
7
)/

n
u
ll
,

] t
1
.i
n
c
/
∅,

t 2
.g
e
t(
c
)/

8

o
b
j(
h
):

t 1
.g
e
t(
c
)/

n
u
ll
,

t 1
.p
u
tI
fA

b
se

n
t(
c
,
1
)/

7
,
t 1
.g
e
t(
c
)/

7
,
t 1
.r
e
p
la
ce

(c
,
7
,
8
)/

tr
u
e
,

t 2
.g
e
t(
c
)/

8

Fig. 5. Example for 3 ex-
tended histories of a Map
with the extended opera-
tion from Figure 2. The
histories are executed by
threads t1 and t2.

Internal Events. Let h be an extended-history that
contains an extension invocation event einv . We say
that a basic event e is executed by einv in h, if e and
einv have the same thread name, and one of the fol-
lowing conditions is satisfied: (1) e appears between
einv and the next matching response of einv ; (2) einv
is pending in h, and e appears after einv . We write
h|einv to denote the subsequence of h of all events
that are executed by einv . We say that a basic event
e is internal in h if e is executed by an extension in-
vocation event in h.

For example, in the extended-history h1 from Fig-
ure 5, the events that are marked with an underline are
executed by the extension event [t1.inc(c) and therefore
they are internal events in h1. Together they form the
subsequence h1|[t1.inc(c).

Two Perspectives. An object perspective of an
extended-history h, denoted by obj (h), is the maximal
subsequence of h such that obj (h) does not contain
extension events. A client perspective of an extended-
history h, denoted by client(h), is the maximal sub-
sequence of h such that client(h) does not contain
internal events. Figure 5 shows the two perspectives
of an extended history.

Definition 5 (well formed extended-history).
We say that an extended-history h is well formed if:
(1) both obj (h) and client(h) are well formed histo-
ries, (2) for every extension invocation einv in h that
is non-pending, h|einv is complete.

In the sequel, we consider only well-formed
extended-histories.

Definition 6 (Sequential Specification). A se-
quential specification of an object with extended
operations is a set of extended-histories S such that
every s ∈ S is sequential and does not contain inter-
nal events.

Semantics of an Encapsulated Extension. An imple-
mentation of a linearizable object x with extended op-
erations defines a set of possible extended historiesHx,
defined as follows.
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Define an operation history (for an extended method m) to be an extended
history consisting of an invocation event e ofm, followed by a sequence of internal
events executed by e, optionally followed by a matching response of e. The
semantics of the implementation of m, denoted [[m]] can be formally represented
as a set of operation histories (denoting possible executions of a single invocation
of m).

Given an extended history h and an extended invocation event e in h, define
h[e] to be the sequence e(h|e) if e is pending in h and the sequence e(h|e)e′, if
e′ is the next matching response of e in h. Thus, h[e] represents the operation
history corresponding to e.

An extension x of a sequential specification Base consists of a set of extension
operations m1, · · · ,mk. The set of extended histories Hx is defined to be the set
of all well-formed extended histories h such that (a) obj (h) ∈ Base, and (b) For
any invocation event e, of an extension operation mi, in h, we have h[e] ∈ [[mi]].

The above definition captures the possible behaviors of x when used with any
linearizable implementation of Base. The following definition thus captures the
intuition that x should work correctly when used with any correct implementa-
tion of Base.

Definition 7 (Linearizable Encapsulated Extension). We say that the en-
capsulated extension x is linearizable with respect to a sequential specification S,
if for every h ∈ Hx there exists s ∈ S such that s is a linearization of client(h).

3.2 The Reduction Theorem

Properties of Extended-Objects. It can be checked that the set Hx satisfies the
following properties, for any extended history h:

(1) if h ∈ Hx and h′ is a well-formed subsequence of h such that obj (h) = obj (h′),
every internal event in h′ is executed by the same extension invocation in
h′ as in h, and every extension response in h′ matches the same extension
invocation in h′ as in h, then h′ ∈ Hx.

(2) if obj (h) ∈ Hx and for every extension invocation event einv there is h′ ∈ Hx

in which h[einv ] = h′[einv ], then h ∈ Hx.

Condition (1) means that we can create a history in Hx by omitting some of
the extension invocation events with their next matching responses (or without
them if they are pending). This ensures that the behaviour of the concurrent
object is not affected by the extended events. This condition is satisfied because
the concurrent object’s state is only accessed by its client API.

Condition (2) means that the behavior of an extended method only depends on
its arguments and its interaction with the base object. This condition is satisfied
because the only shared state (between threads) is the state of the concurrent
object.

Reduction Theorem. Let einv be an invocation event in an extended-history h.
We say that einv is interrupted if there exists an event e in h such that: (i) einv
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and e have a different thread name; (ii) e appears after einv ; (iii) e does not
appear after the matching response of einv . For example, in the extended-history
h1 from Figure 5, the event einc = [t1.inc(c) is interrupted because the events of
t2.put(c, 7)/null appear between einc and its matching response.

We write #(h) to denote the number of interrupted invocation events in h.
We write Hk

x to denote {h ∈ Hx | #(h) ≤ k}, and H0
x to denote the subset of

sequential histories. client
[
H0

x

]
=

{
client(h) | h ∈ H0

x

}
is the client perspective

of the sequential histories.
We present our reduction theorem below, treating the implementation of the

extension itself as its sequential specification. Specifically, we consider the case
where client

[
H0

x

]
is the sequential specification for the extension. In [4] we

present a generalization of this theorem which handles general specifications.

Theorem 1 (Reduction Theorem). If the set H1
x is linearizable with respect

to client
[
H0

x

]
, then the set Hx is linearizable with respect to client

[
H0

x

]
.

Proof (Sketch). We use induction to show that for any n ≥ 1, Hn
x is linearizable

with respect to client
[
H0

x

]
. Let’s assume that for some k ≥ 1, Hk

x is linearizable,
and prove that Hk+1

x is linearizable. Let h ∈ Hk+1
x be a history with #(h) = k+1

which contains an interrupted extension invocation einv . Let’s assume that einv is
not pending and has a matching response eres (the case in which einv is pending
can be shown in a similar way).

Using condition (1), we can remove einv and eres from h, and get a new history
h′ ∈ Hx with #(h′) = k. Notice that all internal method calls h|einv are not
internal in h′, and appear in client(h′). By the induction hypothesis, client(h′) is
linearizable — let s′ be its linearization. s′ also contains the subsequence h|einv .

s′ ∈ client
[
H0

x

]
, so let h′′ ∈ H0

x be a history such that client(h′′) = s′.
We know that #(h′′) = 0, and we also know that h|einv is a subsequence of
client(h′′).

Let’s add einv to h′′ right before the beginning of the subsequence, and eres
right after the end of the subsequence, and denote the new history by ĥ.

obj (ĥ) = obj (h′′) ∈ Hx, and for any invocation e′inv �= einv in ĥ we know that

ĥ[e′inv ] = h′′[e′inv ]. Furthermore, for einv in ĥ we know that ĥ[einv ] = h[einv ].

Together, we can apply condition (2), so ĥ ∈ Hx.

#(ĥ) ≤ #(h′′)+1 = 1, so by the induction hypothesis client(ĥ) is linearizable.

client(ĥ) can be created from client(h) by omitting some pending invocations,
appending matching responses to other pending invocations, and moving einv
and eres closer to each other. The order of operations in client(ĥ) preserves the

order of operations in client(h), and therefore the linearization of client(ĥ) is
also a linearization of client(h), which means that client(h) is linearizable.

The complete proof is presented in [4].

4 Non-interfering Linearizable Extensions

In this section, we consider conditions under which different linearizable ex-
tensions of a concurrent object do not interfere with each other. Specifically, let



Checking Linearizability of Encapsulated Extended Operations 321

em1, · · · , emk be encapsulated extended operations of a concurrent object Base.
Suppose that, for each i, {emi}∪Base is linearizable. We present sufficient con-
ditions under which {em1, · · · , emk} ∪ Base is guaranteed to be linearizable.
When these conditions hold, verifying linearizability of an encapsulated exten-
sion is further simplified as each extended operation can be independently veri-
fied. Many extended operations in the programs in our empirical studies satisfy
these conditions.

Recall that a method call is a pair of events of the form [t.m(a)]t.m/b which we
also refer as t.m(a)/b. In the sequel, we may refer to m(a)/b when the thread
name is irrelevant or can be understood from the context.

Given a sequence α = c1 · · · cm, where each ci is a method call of the form
mi(ai)/bi, we define t.α to be the sequential history t.c1 · · · t.cm. We denote M
to the set of base method calls, and ME to denote the set of both base method
calls and extension method calls.

4.1 Replaceability

We first introduce a notion of replaceability.
Let c ∈ ME be some method call and let M ⊆ ME be a set of method calls.

We say that c ∝ M if for every concurrent history α(t.c)β in client [Hx] there is
some c′ ∈ M such that α(t.c′)β is in client [Hx]. For example:

readAndWriteTrue()/false ∝ {write(true)/ok}
computeIfAbsent(3)/4 ∝ {get(3)/4}

computeIfAbsent(3)/9 ∝ {get(3)/9, put(3, 9)/null} 1

We say that a method call c is replacement equivalent to M if c ∝ M and
for every c′ ∈ M we have c′ ∝ {c}. We say that c is replaceable by M if c is
replacement equivalent to some subset ofM . We say that a method is replaceable
by M if each of its method calls is replaceable by M .

Recall that H1
x denotes the set of extended histories of x containing at most

one occurrence of an interrupted invocation event. For any set of method calls
M ⊆ ME , let H1

M denote the subset of histories from H1
x in which all the

uninterrupted operations are in M .

Lemma 1. If c is replaceable by a set of method calls M , and all the histories
in H1

M are linearizable, then all the histories in H1
M∪{c} are linearizable.

Proof. Assume that all histories in H1
M are linearizable. Consider any history

h ∈ H1
M∪{c}. Replace all (uninterrupted) appearances of c with other calls from

M to get a history h′ in H1
M . Let s′ be a linearization of h′. Replace the replace-

ment calls back by c to get a sequential history s, which will be a linearization
of h.

Corollary 1. If every method call in ME \ M (of an extended operation) is
replaceable by M, then Hx is linearizable iff H1

M is linearizable.

1 The pure computation in computeIfAbsent calculates the square of the given key.
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Discussion. Consider the examples computeIfAbsent (Figure 1) and inc (Fig-
ure 2). Each of these extension operations are replaceable (by the base map
method calls). For example, the method call computeIfAbsent(3)/9 is replace-
able because in any history we can replace such uninterrupted call with a call to
put or get, as appropriate:

computeIfAbsent(3)/9 ∝ {get(3)/9, put(3, 9)/null}

and in any other history with these calls, we can replace them back:

get(3)/9 ∝ {computeIfAbsent(3)/9}

put(3, 9)/null ∝ {computeIfAbsent(3)/9}
It follows from the above corollary that these two extension operations are

non-interfering. To verify that an extension consisting of this pair of operations
is linearizable it suffices to verify that the two extensions consisting of each of
these operations separately is linearizable.

Not only does the corollary help decouple the verification of multiple extension
operations, it also helps simplify the verification of an extension consisting of a
single operation. This is because the set of histories H1

M we need to check is
smaller than the set Hx even when the extension consists of a single operation.

Just as we expect, the above corollary does not apply to the example in Fig. 4.
As explained in Section 1, H1

M (i.e., the set of histories with at most one invoca-
tion of readAndWriteTrue) is linearizable for this example, but the extension is
not linearizable. Corollary 1 does not apply because readAndWriteTrue()/false
is not replaceable — we can take any history in client [Hx] and replace a method
call readAndWriteTrue()/false with the method call write(true)/ok to get a
new history in client [Hx], however, in some histories in client [Hx] we cannot
replace a method call write(true)/ok back with readAndWriteTrue()/false
and get a history in client [Hx] (consider histories where the state of the register
before the call is true).

4.2 Composition Closure

A sequence of method calls β is said to be atomically equivalent to a method call
c if for all α, γ, we have α(t.β)γ ∈ obj [Hx] iff α(t.c)γ ∈ obj [Hx]. We say that a
set of method calls M is composition-closed if every sequence of calls from M is
atomically equivalent to a single call in M .

Example. AGeneric Register is a register with three linearizable base operations:
read() that returns the register’s value, write(x) that changes the register’s
value to x and returns the register’s old value (an unconditional “swap”), and
a unique operation compareAndSwap(expect,new) that changes the register’s
value to new if it equals expect, and returns the register’s old value (whether it
changed or not).
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In this example, the sequence write(7)/0 write(8)/7 is atomically equivalent
to the call write(8)/0. Furthermore, any sequence of read and write over a
generic register (with at least one write):

m1 (args1)/b1 . . .mk (argsk)/bk

is atomically equivalent to write(argsj)/b1, where j is the index of the last write
— this single operation makes the change of the whole sequence atomically, and
returns the value of the register before the sequence. Hence, the set of all method
calls to {read, write} is composition-closed. This composition-closure property
holds even if we include the compareAndSwap operation.

Lemma 2. The set of all base method calls of a generic register is composition-
closed.

Now let’s look at encapsulated operations over any M that is composition-
closed:

Lemma 3. If M is composition-closed, then every encapsulated extended oper-
ation of the object is replaceable by M.

Proof. In any extended history, an uninterrupted call of the encapsulated ex-
tended operation can be replaced by its internal base operation calls. This se-
quence of base calls is atomically equivalent to a single base call which can
replace it, and vice versa.

By combining Lemma 3 with Corollary 1, we get:

Corollary 2. Let M, the set of all base method calls of a concurrent object, be
composition-closed. For any encapsulated extension x of this object, if H1

M is
linearizable, then Hx (and x) is linearizable.

The immediate implication of Corollary 2 on the generic register example is that
checking the linearizability of H1

{read()/b,write(a)/b,compareAndSwap(a,b)/c} guaran-
tees the linearizability of Hx. We can further reduce the set of histories that
need to be checked by noticing that every compareAndSwap(a, b)/c is replaceable
by the set of read and write operations:

Corollary 3. For encapsulated extended operations over a generic register, ver-
ifying the linearizability of the histories in H1

{read()/b,write(a)/b} guarantees the
linearizability of every history in Hx.

In Section 5.2 we show that verifying the linearizability of many real world
methods can be reduced to verifying linearizability of encapsulated extended
operations over a generic register.

4.3 Further Reductions

Let’s look at some history h ∈ H1
M, assuming M is composition-closed. Let’s

assume that there is a sequence s ∈ M∗ of successive base operations in h, and
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the interrupted encapsulated operation does not call any internal operations
during that sequence, i.e., its thread is idle. The sequence of base operations
is atomically equivalent to some single base operation m(a)/b ∈ M that can
replace s and give a new history h′ ∈ H1

M. Verifying the linearizability of h′

guarantees that h is linearizable, because we can take the linearization of h′ and
replace m(a)/b back with s.

Let H1
M ⊆ H1

M be the subset of histories where between every two uninter-
rupted base operations, the interrupted encapsulated operation must have called
an internal operation. By induction, we can conclude:

Lemma 4. If M is composition-closed, then verifying the linearizability of H1
M

guarantees the linearizability of H1
M, and therefore guarantees the linearizability

of Hx.

Corollary 4. For encapsulated extended operations over a generic register, ver-
ifying the linearizability of the histories in H1

{read()/b,write(a)/b} guarantees the

linearizability of every history in Hx.

Corollary 4 subsumes the results of Corollary 3.
In every history h ∈ H1

M, between every two uninterrupted base operations,
there must be an internal operation of the interrupted call. This means that if
h is linearizable, the linearization point of the interrupted call may be seen as if
it happened in one of its internal operations (or in its invocation/response) —
we look at the uninterrupted calls with the linearization points that precede
and succeed the one of the interrupted call, find an internal operation (of the
interrupted call) that reside between them, and move the linearization point of
the interrupted call inside it, without breaking the total order of the linearization
points.

Lemma 5. If M is composition-closed and H1
M is linearizable, then we can

linearize every history in H1
M using linearization points that reside in the same

thread.

Notice the necessity of M being composition-closed. Figure 6 is an artificial
example for a replaceable encapsulated operation over a base data-structure that
is not composition-closed — the sequence increase()/ok increase()/ok is not
atomically equivalent to any single operation. In this linearizable example, some
histories can be linearized only by picking a linearization point that resides in a
different thread, such as:

Env.:
[

increase()

]

/ok

[

increase()

]

/ok

Main:
[

optimisticIsEven()

[

read()

]

/1

◦
[

read()

]

/3

]

optimisticIsEven/true
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boolean optimisticIsEven() {
int temp1, temp2;
temp1 = read();
if (temp1 % 2 == 0) {
return true;

}
temp2 = read();
if (temp1 == temp2) {
return false;

}
else {
return true;

}
}

optimisticIsEven()/true ∝ {read()/x | x is even}
∀x even : read()/x ∝ {optimisticIsEven()/true}
optimisticIsEven()/false ∝ {read()/x | x is odd}
∀x odd : read()/x ∝ {optimisticIsEven()/false}

Fig. 6. An encapsulated extended operation over an integer register with two base
operations: read() that returns the register’s value and increase() that increases its
value by one. optimisticIsEven() is replaceable by the base methods.

5 On the Applicability of the Reduction

5.1 Checking Encapsulation of Extended Operations

Checking that a method is an encapsulated extension can be done conservatively
by checking that: (1) The method does not access global mutable variables, and
(2) all external methods invoked by an encapsulated method are either base-
methods or pure.

Out of 109 methods used [5], 55 methods were identified as encapsulated
operations, using the technique described in [6]. The base data-structure in all
of the 55 methods was the linearizable Java ConcurrentMap interface.

5.2 Checking Composition Closure

In general, checking that an encapsulated operation is replaceable (as defined in
Section 4) can be hard. It requires verifying all sequential executions, which is un-
decidable. In contrast, checking composition closure can be done once and for all
for a given base data structure. Unfortunately, the Java ConcurrentMap, which
is heavily used, does not satisfy this closure property since a sequence of opera-
tions on different keys is not necessarily equivalent to any single ConcurrentMap
operation.

We observed 52 out of the 55 operations employ maps in a limited fashion: any
single invocation of the operation is guaranteed to invoke map operations on only
one key (Note that different execution paths may, however, operate on different
keys — Figure 7 is an interesting example which illustrates this). Such operations
are guaranteed to be replaceable by ConcurrentMap’s base operations. In fact,
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the code can be syntactically replaced by an equivalent extended encapsulated
operation over a generic register as follows:

map.get(k) ⇒ reg.read()

map.put(k, v)⇒ reg.write(v)

map.remove(k)⇒ reg.write(null)

map.putIfAbsent(k, v)⇒ reg.compareAndSwap(null,v)

map.replace(k, v1, v2)⇒ (reg.compareAndSwap(v1, v2) == v1)

Intuitively, checking the linearizability of the new method is equivalent to check-
ing the linearizability of the original method.

The other 3 out of the 55 operations employ either use size and clean or
more than one key and therefore are not considered.

final FxLanguage DEFAULT = ...
final ConcurrentMap<FxLanguage, FxValueRenderer> renderers = ...

FxValueRenderer getInstance(FxLanguage language) {
if (language == null) {
// default renderer always exists
return renderers.get(DEFAULT);

}
if (!renderers.containsKey(language)) {
renderers.putIfAbsent(language, new FxValueRendererImpl(language));

}
return renderers.get(language);

}

Fig. 7. An extended encapsulated operation from Flexive, class: FxValueRendererFac-
tory. In every execution path, only a single key is used. This example is not lin-
earizable — consider the following history: [A.getInstance(L),A.containsKey(L)/false,
A.putIfAbsent(L,FxA)/null ,B .put(L,FxB )/FxA,A.get(L)/FxB , ]A.getInstance/FxB .

5.3 Checking Linearizaibility via Abstract Interpretation

We implemented a conservative tool to check the linearizability of the 52 ex-
amples using the abstract interpreter described in [4]. The tool employs our
theoretical results by checking only histories with 2 threads in which the ex-
tended operation run once. We verified 24 examples as linearizable (Table 1)
and detected 27 linearizabilty violations (Table 2). Our implementation failed to
verify one linearizable example due to the abstraction, and issued a false alarm
(see Figure 8) — The reason for the failure is an over approximation that did
not store the correlations between objects and constants, such as osFamily and
"windows"/"unix".
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Table 1. Encapsulated operations verified as linearizable by the static analysis method
presented in [4]

Application Name Class Name Code Lines Verification Time Abstract States
Apache ServiceMix SimpleLockManager 11 2375 (ms) 49
Clojure Namespace 8 2329 (ms) 49
Cometdim ChatService 7 2169 (ms) 49
DWR AbstractMapContextScope 14 2357 (ms) 49
ehcache-spring-annotation CacheAttributeSourceImpl 11 2466 (ms) 49
FindBugs Profiler 8 2451 (ms) 54
Granite ExternalizerFactory 14 2559 (ms) 49
GWTEventService DefaultUserManager 11 1702 (ms) 14
Hazelcast Log4jFactory 12 2450 (ms) 49
ifw2 PropertyNavigator 14 2794 (ms) 91
ifw2 ReflectiveClone 11 2310 (ms) 49
ifw2 ClassInfo 10 2326 (ms) 49
Jboss AOPLogger 14 2404 (ms) 49
Jetty AbstractBayeux 12 2450 (ms) 49
Jetty OortChatService 7 2185 (ms) 47
Jetty OortChatService 7 2341 (ms) 47
Jexin ActiveTemplateMap 8 2341 (ms) 47
Jsefa InitialConfiguration 14 2388 (ms) 49
Keyczar StreamCache 12 2502 (ms) 49
OpenJDK ThrowingTasks 12 3776 (ms) 98
Tammi StaticPersisterFactory 18 3308 (ms) 122
ProjectTrack MethodCallRecorder 8 2326 (ms) 48
ProjectTrack MethodCallRecorder 8 2357 (ms) 49
Yasca Profiler 8 2356 (ms) 49

Table 2. Encapsulated operations with non-linearizability reports issued by the static
analysis. The bold row (autoandroid) is the benchmark from Figure 8 that raised a
false alarm.

Application Name Class Name Code Lines Verification Time Abstract States
Adobe BlazeDS FIFOMessageQueue 10 1498 (ms) 17
Adobe BlazeDS FIFOMessageQueue 10 1452 (ms) 17
Annsor Annsor 11 1405 (ms) 12
Apache Cassandra SuperColumn 15 1529 (ms) 12
Apache Cassandra ColumnFamily 21 1498 (ms) 12
Apache MyFaces Trinidad SessionChangeManager 5 1297 (ms) 8
Apache Tomcat ApplicationContext 9 1343 (ms) 9
Apache Tomcat ApplicationContext 8 1374 (ms) 12
Apache Tomcat ReplicatedContext 6 1436 (ms) 9
Apache CXF ClassResourceInfo 12 1483 (ms) 24
autoandroid AndroidTools 16 1342 (ms) 17
dyuproject StandardConvertorCache 10 1438 (ms) 17
dyuproject StandardConvertorCache 11 1437 (ms) 20
Flexive MessageBean 7 1390 (ms) 8
Flexive FxValueRendererFactory 10 1655 (ms) 19
GlassFish BeanManager 13 1531 (ms) 13
Gridkit ReflectionPofSerializer 14 1455 (ms) 12
GWTEventService AutoIncrementFactory 4 1266 (ms) 7
Hazelcast ClientEndpoint 8 1655 (ms) 12
Hudson Hudson 10 1307 (ms) 12
JRipples HessianSkeletonProviderImpl 21 1483 (ms) 19
memcache-client SockIOpool 10 1327 (ms) 8
Tammi StaticVariableRegistry 14 1389 (ms) 11
RestEasy XmlJAXBContextFinder 8 1395 (ms) 13
RestEasy JsonJAXBContextFinder 5 1732 (ms) 12
RestEasy JsonJAXBContextFinder 5 1436 (ms) 12
Torque-spring PersistenceManagerFactory 8 1529 (ms) 12
Webmill ContextNavigator 9 1545 (ms) 12
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public static AndroidTools forOsFamily(String osFamily) {
AndroidTools instance = androidTools.get(osFamily);
if (instance == null) {
AndroidTools newInstance = null;
if (osFamily.equals(”windows”)) {
newInstance = new WindowsAndroidTools();

} else if (osFamily.equals(”unix”)) {
newInstance = new UnixAndroidTools();

} else {
throw new UnsupportedOperationException(
”Don’t know how to start android tools on ”+ osFamily);

}
instance = androidTools.putIfAbsent(osFamily,newInstance);
if (instance == null) instance = newInstance;

}
return instance;

}

Fig. 8. Application Name: autoandroid, Class Name: AndroidTools. A linearizable en-
capsulated operation that the verification failed to verify, due to impreciseness of our
abstraction.

6 Related Work

Linearizability checking tools can be very effective in identifying bugs and a sub-
stantial body of work exists in this space, as discussed below. A distinguishing
aspect of our work is that we focus on a special case, namely verifying lineariz-
ability of encapsulated extensions of a linearizable object. This problem was
motivated by [1] which shows that extended operations of linearizable collec-
tions are widespread and are a source of concurrency bugs. While [1] presents
a dynamic tool for checking linearizability of extended operations, we focus on
static verification of the same.

Modular Reasoning. The basic techniques we utilize have a long history in the
literature on modular reasoning techniques for concurrent systems. The idea of
using a general client over-approximating the thread environment is common in
modular verification. Previous work represented the environment as invariants [7]
or relations [8] on the shared state. This idea has also been used early on for
automatic compositional verification [9]. In addition, this approach has led to the
notion of thread-modular verification for model checking systems with finitely-
many threads [10], and has also been applied to the domain of heap-manipulating
programs with coarse-grained concurrency [11]. The main ideas in these works
is to approximate the thread environment.
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Exploiting Atomicity of Methods. [12] shows that schedules where linearizable
operations are executed with interruptions need not be generated. This can re-
duce the number of interleavings that need to be explored. This insight has also
been discussed and made use of in the preemption sealing work of [13]. [14,15]
use the atomicity proof to simplify the correctness proofs of multithreaded pro-
grams. [16] presents a proof calculus for reasoning about concurrent programs
with atomic sections. It would be interesting to see if such a proof calculus can
be used to simplify the proofs of our reduction theorems.

Dynamic Tools for Finding Linearizabilty Violations. Vyrd [17] is a dynamic
checking tool that checks a property similar to linearizability. Line-Up [18] is a
dynamic linearizability checker that enumerates schedules.

Static Linearizability Verification. [19] manually proves correctness of several
interesting concurrent data structure implementations using rely-guarantee rea-
soning. The PVS system has been successfully used to semi-automatically verify
linearizability [20,21,22] of several interesting programs.

[23] pioneered the idea of using abstract interpretation [24] to develop an au-
tomatic over-approximation for checking linearizability. Thus, the algorithm can
prove linearizability in certain programs but may fail due to overly conservative
abstraction. [25,26] generalize [23] using a thread-centric approach to programs
with unbounded number of threads. [27] combines the idea of bounded difference
with rely guarantee reasoning and shape abstractions in order to perform fast
linearizability checks.

Composing Linearizable Operations. Recently several interesting techniques for
enforcing atomicity of sequences of linearizable operations were developed. [28]
employs a variation of the join-calculus to compose operations via DCAS. [29,6]
synthesize locks to enforce atomicity and deadlock freedom. In contrast to these
approaches, we focus on understanding the complexity of verifying the lineariz-
ability of a special useful class of composed operations.
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