
Delivering Guaranteed Display Ads under
Reach and Frequency Requirements

Ali Hojjat∗ and John Turner
Paul Merage School of Business
University of California Irvine

hojjats@uci.edu, john.turner@uci.edu

Suleyman Cetintas and Jian Yang
Advertising Sciences Group
Yahoo Labs, Sunnyvale, CA

cetintas@yahoo-inc.com, jianyang@yahoo-inc.com

Abstract

We propose a novel idea in the allocation and serving of
online advertising. We show that by using predetermined
fixed-length streams of ads (which we call patterns) to
serve advertising, we can incorporate a variety of interesting
features into the ad allocation optimization problem. In
particular, our formulation optimizes for representativeness
as well as user-level diversity and pacing of ads, under
reach and frequency requirements. We show how the problem
can be solved efficiently using a column generation scheme
in which only a small set of best patterns are kept in
the optimization problem. Our numerical tests suggest that
with parallelization of the pattern generation process, the
algorithm has a promising run time and memory usage.

Introduction
Efficient serving of advertising is a key problem and a
dominant source of revenue for online publishers. A large
publisher may have hundreds of millions of page visits
every day, and tens of thousands of concurrent advertising
campaigns to manage. A guaranteed contract typically
demands a certain number of ad impressions to be shown
in certain slots on specific pages of the publisher’s website.
A targeted campaign further requires the ad to be shown
only to users of certain demographic groups (e.g. age,
gender, income level, location) and/or behavioral attributes
(e.g. shopping). User arrivals, in aggregate, follow certain
patterns which enables the publisher to forecast the supply of
impressions and sell guaranteed advertising campaigns well
in advance. Over short time intervals, however, the arrival of
each user type is a lot less predictable. Even a few percent
improvement in drawing the “correct” ad for each slot on the
web page that each user sees can improve publisher revenues
by tens of millions of dollars, increase advertising efficiency
and return on investment for advertisers, and enhance user
experience.

In this paper, we propose and examine a new idea
for serving targeted display ads in the guaranteed display
marketplace, namely serving with patterns. Upon the first
visit over the serving period, we assign each user a
predetermined fixed-length stream of ads, called a pattern,
∗Work completed while interning at Yahoo Labs.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which is drawn from an existing pool of patterns according
to the solution of our optimization problem. Then, in later
visits, the user will be shown the exact sequence of ads in
the assigned pattern. Further visits beyond the pattern length
are treated as surplus ad inventory and served in a secondary
sales channel (e.g. ad auctions in the non-guaranteed
marketplace) until the next serving period. We show that
the resulting formulation, although seemingly intractable,
can be solved rather efficiently using a column generation
approach. Furthermore, our formulation is capable of
explicitly modeling all or any of the following concerns
related to serving guaranteed display ads:

• Representativeness: The publisher should not try to
deliver an entire contract to a small (potentially easy to
serve) subgroup of targeted users. To capture a notion
of fair allocation in the model, it is often assumed that
the advertiser would like to be matched with a somewhat
equal mix of targeted demographics. See (Ghosh et al.
2009) for a more elaborate discussion.

• Reach and Frequency: Advertisers can specify the
number of unique individuals who should see their
ad over the campaign period (reach), and also the
minimum/maximum number of times each user should
see their ad over the campaign period (frequency). This
generalizes the commonly-practiced, and more widely-
studied, idea of impression-based contracts that simply
require a certain number of ad impressions to be shown
to a targeted audience. To the best of our knowledge,
our model is the first to consider optimal scheduling
of online advertising under explicit reach and frequency
specifications. This added flexibility, we expect, will
greatly enhance the efficiency and ROI of the advertiser’s
campaign.

• User-level Pacing: The advertiser or the publisher may
like to maintain a desired spacing of each ad over time
(e.g. uniform delivery over time) which will determine
how quickly each user is re-exposed to the ad over the
campaign duration. To the best of our knowledge, existing
research that explicitly considers uniform delivery of
campaigns at the time of optimizing ad allocation focuses
on the cumulative impressions received by each campaign
in aggregate and not at the user-level (Araman and
Fridgeirsdottir 2010). In practice, uniform delivery is

considered as an implied requirement and treated with
run-time frequency capping1 heuristics. Our model is
capable of explicitly measuring the spacing of ads over
time at the optimization stage and generating patterns
with the desired pacing at the user level.

• User-level Diversification: The publisher would like
each user to see a variety of (relevant) ads from different
advertisers. So, unless requested by an advertiser, the
publisher prefers to avoid showing the same ad too many
times to the same user. Again, the diversity of ads within a
pattern can be explicitly modeled when patterns are being
generated. Moreover, we have the ability to restrict the
number of competing campaigns in a pattern (e.g. require
that a pattern cannot contain both Coke and Pepsi ads).
This is a common practice in arranging TV commercials
within each break (Bollapragada, Bussieck, and Mallik
2004).

We begin with a brief overview of the underlying math-
ematical problem and relevant notation. We then describe
how patterns can be used to serve ads, provide details of
our column generation algorithm, and show our numerical
results.

Problem Statement
The structure of a typical ad allocation problem can be
represented with a bipartite graph, as shown in Figure 1.
Each partition of user impressions (e.g. based on website,
position of ad on the webpage, user demographics and
behavioral attributes) is modeled as a supply node, indexed
by i ∈ {1, . . . ,M} on the left, and each ad campaign
(advertising contract) is modeled as a demand node, indexed
by j ∈ {1, . . . , N} on the right. The arcs show the targeting
criteria of the campaigns, i.e., which impressions are eligible
to be served with ads from which campaigns. We use Γ(j)
to denote the set of all impressions i eligible for contract
j, and Γ(i) to denote the set of all eligible contracts j that
can be delivered to an impression of type i. Each supply
node i represents si impressions, or ŝi unique users, over
the planning horizon (Note that ŝi ≤ si since each user
may arrive multiple times). Similarly, each campaign may
demand a total of dj impressions across all eligible supply,
or a reach of rj unique users, with each user being required
to see the ad at least qmin

j and at most qmax
j times to be

counted as reached. The problem is then to find the optimal
fraction of impressions i that should be allocated to each
contract j, denoted xij , so as to minimize under-delivery,
maximize representativeness, and achieve the desired user-
level pacing and diversity of ads.

Modeling the ad allocation problem as a bipartite graph
is not new. Langheinrich et al. (1999) is among the first
and they use a linear objective to maximize the total click-
through rate. More recently, Turner (2012) uses a quadratic
objective to spread impressions across viewer types and thus

1Frequency capping simply restricts number of views of each
ad per visitor within a specific period of time (e.g. 1hr, or 24hrs) so
the user is not overexposed to an ad. Browser cookies are typically
used to keep track of impression counts. Many online publishers
allow campaign managers to control the frequency cap.

Supply of

Impressions

Campaign

Demands

s1
d1

.

si

.

sM

dj

dN

Figure 1: Example Bipartite Graph

minimize the variance of the number of impressions served.
Bharadwaj et al. (2012) consider the following impression-
based formulation that minimizes a weighted average of
non-representativeness (as an L2-norm penalty) as well as
under-delivery:

Minimize:
1

2

∑
j,i∈Γ(j)

siVj

θj
(xij − θj)2 +

∑
j

pjuj (1a)

s.t.
∑

i∈Γ(j)

sixij + uj ≥ dj ∀j (1b)

∑
j∈Γ(i)

xij ≤ 1 ∀i (1c)

xij , uj ≥ 0 ∀i, j (1d)

Demand constraint (1b) requires the total number of
impressions allocated to each contract j to exceed its
demand dj , or otherwise we have an under-delivery of uj
impressions. Supply constraint (1c) implies that we cannot
allocate more than 100% of supply from each node i. Each
contract has an under-delivery penalty pj per impression,
and a relative importance weight Vj . Parameter θj =
dj
/(∑

i∈Γ(j) si
)

denotes the ratio between the contract’s
demand and its total eligible supply. By definition, in a
perfectly representative allocation, each contract should
grab exactly a θj–proportion of each eligible supply pool,
and therefore the deviation from θj is (quadratically)
penalized in (1a). Using duality theory, (Bharadwaj et al.
2012) develop an efficient iterative algorithm, referred to
as SHALE, for solving a problem with the above structure.
Similar formulations of the problem and further discussion
can be found in (Nakamura and Abe 2005; Yang et al. 2010).

In the following section we demonstrate how the above
formulation can be modified to incorporate a variety of
interesting features, when we serve ads using patterns. Note
our main idea (of using patterns) can be incorporated into
any math program with similar steps described below.

Serving ads using Patterns
We define a serving pattern as a finite permutation of
ads. A particular campaign may show up multiple times at
different points in the serving pattern, and the pattern should
not necessarily contain all campaigns. A few examples of
patterns composed of three campaigns {A,B,C} are shown
in Figure 2. The first pattern has 6 slots, and an equal number
of each ad are spread uniformly throughout the pattern.

 A B C A B C

 A C B C A C B C

 A B B A C C C C

Figure 2: Example of patterns with 3 campaigns {A,B,C}

The next patterns have a length of 8, with campaign C
appearing twice as often as campaigns A or B. The second
pattern illustrates uniform pacing (assuming arrivals are
also uniform over time), whereas the third pattern delivers
campaigns B and C repeatedly to strengthen user recall.

Upon the first arrival in the serving period, each individual
user is assigned a particular serving pattern, and upon his/her
kth arrival will be shown the ad in the kth slot of the
assigned pattern. The goal is then to find a handful of well-
paced patterns and a representative user assignment such
that reach and frequency requirements are met.

Let N denote the entire set of possible patterns of
different lengths and structure. For each pattern n ∈ N ,
we know the exact number of times each contract j appears
in the pattern (i.e. its frequency), denoted ajn, and we
can easily tell if ajn is within the desired frequency range(
qmin
j , qmax

j

)
, which we denote using the binary indicator

bjn. The quality of the pacing and diversity of ads within a
pattern is captured by the cost parameter πn whose precise
definition will become clear when we describe our pattern
generation problem. Let vin denote the number of times
pattern n is assigned to users from supply node i. Therefore,∑
n ajnvin gives the total impressions of j shown to supply

pool i, and
∑
n bjnvin is the number of unique users in

i who have seen j within the desired frequency range.
Realizing that xij = 1

si

∑
n ajnvin, we can formulate our

ad allocation problem in similar form to (1) as:

Minimize:
1

2

∑
j,i∈Γ(j)

siVj

θj

(∑
n ajnvin

si
− θj

)2

+
∑
j

pjuj +
∑
i,n

πnvin (2a)

s.t.
∑

n,i∈Γ(j)

bjnvin + uj ≥ rj ∀j (2b)

∑
n

vin ≤ ŝi ∀i (2c)

vin, uj ≥ 0 ∀i, j, n (2d)

Notice that we use the cost parameter πn to explicitly
penalize non-smooth and/or non-diverse delivery at the user
level in the objective function. The demand constraint (1b),
or equivalently

∑
n,i∈Γ(j) ajnvin + uj ≥ dj , is replaced

with the reach and frequency constraint (2b) which requires
the contract to be served with at least rj unique users seeing
the ad within the correct frequency range. The shortfall uj
is penalized in the objective. Note that under-delivery uj
is now measured in terms of reach (and not impressions).

The supply constraint (2c) ensures that the total number
of patterns assigned to pool i cannot exceed the number
of unique users in i (since each user is assigned a single
pattern). Here, representativeness is still measured in terms
of impressions, but one could easily express it in terms
of reach as

∑
j,i∈Γ(j)

ŝiVj

θ̂j

(∑
n bjnvin
ŝi

− θ̂j
)2

, where θ̂j =

rj
/(∑

i∈Γ(j) ŝi
)

is the ratio between the desired reach of
contract j and the available number of unique users across
all targeted users.

A key assumption in the above model is that each user,
over the serving period, will generate at least as many
impressions as there are in the serving pattern assigned to
him/her. Only then is it guaranteed that the user will see
each ad j the ajn number of times (where s/he is counted
as reached if bjn = 1) as we planned when we solved (2).
To this end, we assume that users can be further classified
according to their browsing behavior. All users of the same
visit type, w ∈ W , share a common probability distribution,
φw(k), that gives the probability of such a user generating
exactly k impressions over the serving period. We can then
say that each user of type w will make at least Lw(ρ) =
Φ−1
w (1−ρ) visits with probability ρ. With a reasonably high

ρ, we can use the resulting Lw(ρ) (from now on referred to
in short as Lw) as the appropriate pattern length for a user
of type w. To reflect this in our model, each supply node
needs to be partitioned further based on the user visit types
w, and we also need to maintain a separate pool of patterns,
Nw, in order to ensure that each user of type w is assigned
a pattern of appropriate length Lw. The updated formulation
is provided in the following section when we formlize
our master problem. We should also point out that further
impressions that the user generates beyond Lw are assumed
to be served in a secondary market (e.g. ad auctions in the
non-guaranteed marketplace) and are therefore ignored in
our formulation.

Column Generation

Indeed, generating all possible patterns, storing them in
memory, and solving an optimization problem that requires
as input the entire possible pattern set N is unmanageable.
However, this issue can be handled rather efficiently using a
column generation scheme2. The idea is to start with a small
pool of patterns, solve an assignment problem of type (2),
and then use the optimal primal/dual solution to generate
new patterns that can improve the current solution. We will
then add these improving patterns to the pool and solve the
assignment problem again, and repeat the procedure until
no improving pattern can be found (i.e., full convergence to
the optimal solution), or the improvement in the objective
function seems negligible. In the following, we describe the
two core steps of the column generation algorithm.

2For the theory of column generation, the reader may refer to
(Desaulniers, Desrosiers, and Solomon 2005). Other applications
of column generation in the allocation of online advertising can be
found in (Abrams et al. 2008; Walsh et al. 2010).

Pattern Assignment
For any given set of pattern pools {Nw : w ∈ W}, the
optimal assignment of patterns to users is given by the
following quadratic program, which we refer to as the
Master Problem:

Ψ := Min
1

2

∑
j,w,
i∈Γ(j)

swiVj

θj

(
1

swi

∑
n∈Nw

ajnvwin − θj

)2

+
∑
j

pjuj +
∑

w,i,
n∈Nw

πnvwin (3a)

s.t.
∑

w,i∈Γ(j),
n∈Nw

bjnvwin + uj ≥ rj ∀j (3b)

∑
n∈Nw

vwin ≤ ŝwi ∀w, i (3c)

vwin, uj ≥ 0 ∀j, w, i, n ∈ Nw (3d)

Here, swi and ŝwi are, respectively, the total number of
impressions and unique users of visit type w in supply node
i, and vwin is the number of such users that should be
served with pattern n (of appropriate length Lw selected
from Nw). Once the above is solved, we can use v∗win/ŝwi
as the probability that pattern n ∈ Nw should be assigned to
a user of type (w, i) upon his/her first visit.

Note that by maintaining separate pattern pools based
on length, {Nw : w ∈ W}, we ensure that a pattern of the
correct length Lw is assigned to a user of visit type w.
However, the set of contracts appearing in each pattern may
not be entirely eligible for all impression types i, since in
general, Γ(i) 6= Γ(i′) if i 6= i′. At the time of serving
we should draw patterns of not only the correct length, but
also containing only (some subset of) the eligible contracts
j ∈ Γ(i) for the arriving impression (w, i). This may suggest
that we need to maintain a separate pattern pool for each
(w, i); but in fact, this is unnecessary. The terms

∑
ajnvwin

and
∑
bjnvwin in the objective function (3a) and demand

constraint (3b) are only evaluated for neighboring (i, j)
pairs. Therefore, ineligible contracts j 66∈ Γ(i) in a pattern
are counted as lost impressions if the pattern is assigned
to a user of type (w, i). Therefore, with a scarce supply
of unique users and guaranteed impressions, we expect
the math program to naturally avoid such assignments and
always find (or generate, in the following iteration) a “fully
eligible” pattern to replace any “partially eligible” pattern. In
the end, we expect v∗win = 0 if the set of contracts in pattern
n are not fully eligible for i. This is important, since if we
were forced to use separate pattern pools for each user type
(w, i), we would significantly (and unnecessarily) increase
memory usage and the scale of the problem. To see why,
note that some patterns may be relatively short (e.g., 5 or 10
slots in length) and therefore contain only a few contracts.
Moreover, the sets Γ(i) and Γ(i′) for i 6= i′ can have
significant overlap. Therefore, we would end up with many
duplicate patterns composed of contracts j ∈ Γ(i) ∩ Γ(i′) if
we used separate pattern pools Nwi and Nwi′ .

Let αj and βwi denote the (non-negative) dual multipliers
of the reach and supply constraints (3b) and (3c),
respectively. The reduced cost of each variable vwin can be

derived by constructing the full Lagrangean of the problem
and taking its derivative with respect to vwin. We have:

L =
1

2

∑
j,w,
i∈Γ(j)

swiVj

θj

(1

swi

∑
n∈Nw

ajnvwin − θj
)2

+
∑
j

pjuj +
∑

w,i,
n∈Nw

πnvwin

+
∑
j

αj

(
rj − uj −

∑
w,i∈Γ(j),
n∈Nw

bjnvwin

)

+
∑
w,i

βwi

(∑
n∈Nw

vwin − ŝwi

)
, (4)

from which we have:
∂L
∂vwin

=
∑

j∈Γ(i)

Vj

θj

(1

swi

∑
n∈Nw

ajnvwin − θj
)
ajn

+ πn −
∑

j∈Γ(i)

αjbjn + βwi. (5)

The stationarity condition for an optimal solution requires
(5) to be zero for all basic variables (i.e., patterns that
are used in the solution), and positive for all non-basic
variables (suggesting that patterns which are unused would
increase and worsen the objective function if they were
used). However, we might be able to find (or more precisely,
construct) a pattern k, not currently existing in any of the
pattern pools, with ajk, bjk, and πk values that renders the
reduced cost function (5) negative. Adding such a pattern
to the pattern pool is then expected to improve the optimal
solution when (3) is re-solved. We use this property to
formulate our pattern-generation model.

Pattern Generation
Let v∗win, α∗j , and β∗i denote the optimal primal and dual
solutions to (3) given the current set of pattern pools Nw,
and let x∗wij = 1

swi

∑
n∈Nw

ajnv
∗
win denote the current

impression-allocation plan. For each user type (w, i), the
following model, which we refer to as the subproblem, will
generate a pattern of minimum reduced cost:

ψwi := Min
∑

j∈Γ(i)

Vj

θj

(
x∗wij − θj

)
âj −

∑
j∈Γ(i)

α∗j b̂j + π̂(·)

(6a)

s.t.
∑

j∈Γ(i)

âj = Lw (6b)

qmin
j b̂j ≤ âj ≤ qmax

j ∀j ∈ Γ(i) (6c)

âj : Integer, b̂j ∈ {0, 1}, ∀j ∈ Γ(i) (6d)

Our decision variables, and the cost metric (which depends
on our decision variables) are marked with a caret (̂). The
integer variable âj counts the number of times campaign j
appears in the pattern. The knapsack constraint (6b) ensures
that the correct length Lw of the pattern is used and fully
utilized. The constraint set (6c) ensures that âj is at most
the maximum frequency required by the contract j (as we

would otherwise waste an ad slot in the pattern). Finally,
the binary variable b̂j indicates whether or not the pattern
being generated meets the minimum frequency requirement
for campaign j (Note that b̂j has a negative coefficient in the
objective function, and so b̂j = 1 is always desirable).

If the optimal values of all (w, i) subproblems yield
ψ∗wi + β∗wi ≥ 0, i.e., the reduced costs (5) are all non-
negative, then no improving pattern exists. In that case,
the current solution to the master problem (3) is optimal
and the current set of patterns, contained in the pattern
pools {Nw : w ∈ W}, comprise the basic subset of N . If,
however, we find ψ∗wi + β∗wi < 0 for any (w, i), we will
add the constructed pattern to the pool Nw with ajn = âj ,
bjn = b̂j , and πn = π̂(·). For increased memory efficiency,
one may also remove all patterns that are unused in the
current solution (although the removed patterns may enter
the pool again in later iterations of the master problem).

It is noteworthy to point out that we do not need to solve
the above subproblems for all (w, i) before returning to the
master problem. Even with a single improving pattern we
are guaranteed to improve upon the optimal value in (3).
Therefore, one may solve the subproblems, in some clever
ordering, until a certain number of new patterns are found,
and then return to re-solve the master problem. Moreover,
the above subproblems are independent from one another,
and therefore the pattern construction step is parallelizable.

To initialize the algorithm, we can use any heuristic to
generate an initial set of patterns, or we may set αj = 0,
βwi = 0, xij = 0 (which is primal/dual feasible) and
solve as many subproblems as needed to construct a desired
number of patterns with negative reduced cost. In practice,
ad schedules would need to be re-optimized periodically
(and rather frequently) with updated supply forecasts and
contract lists. As long as the problem parameters (i.e. the list
of guaranteed contracts and supply forecasts) do not change
drastically from one period to the next, we expect many of
the patterns from the previous period to be good candidates
for initializing the pattern pools.

Note that the overall structure of (6) is similar to a
knapsack problem (with complicating frequency capping
constraints (6c)). However, the degree of difficulty of (6)
highly depends on the functional choice for the cost function
π(·). Recall that π(·) is a cost function that measures the
(lack of) quality of a pattern in terms of pacing and/or
diversity of ads. Assuming that diversity and pacing metrics
are separable, we can write π(·) as a weighted sum of
diversity and pacing metrics: π(·) = λdπd(·) + λpπp(·). A
diversity-seeking cost function may take the form:

πd(·) = −
∑
j

Îj , (7)

which simply encourages including more campaigns in the
pattern. The binary variables Îj indicate whether campaign
j appears in the pattern at all. The Big-M constraints of the
form âj ≤ Lw Îj should also be added to the subproblem to
enforce âj = 0 whenever Îj = 0.

A uniform-pacing cost function may take the following

form (adapted from (Kubiak and Sethi 1991)):

πp(·) =
∑

j∈Γ(i)

Lw∑
k=1

(
z̄jk −

k

Lw
âj

)2

, (8)

where z̄jk is the number of times campaign j appears in
the first k slots of the pattern. In order to incorporate (8)
into (6) we also need an additional set of binary decision
variables zjk that indicate whether campaign j is placed
in the k’th slot of the pattern. Furthermore, we need
constraints

∑
j zjk = 1, so exactly one ad is placed in

each slot k of the pattern; z̄jk =
∑k
r=1 zjr to model the

cumulative relationship; and finally âj = z̄jLw . The above
pacing metric simply assumes that with uniform pacing, the
cumulative count z̄jk should grow linearly with slope âj/Lw
throughout the pattern length.

Finally, if we have any set of competing campaigns, C,
which should not be shown to the same user (e.g., Coke and
Pepsi), we can add a constraint of the form

∑
j∈C Îj ≤ 1

so at most one of the competing campaigns is put into the
pattern.

Bollapragada, Bussieck, and Mallik (2004) examine more
involved formulations for the uniform arrangement of TV
advertising. They describe the problem as “placing balls of
different colors into a fixed number of slots such that balls
of the same color are as equally-spaced as possible”. In
their model, the number of balls of each color (âj in our
model) is considered as given. Their performance test on a
variety of formulations shows that a (sub-optimal) greedy
approach, based on the formulation of (Kubiak and Sethi
1991), is the only viable way of solving the problem with
more than 50 slots (Lw) in a reasonable amount of time.
Note that our model has a higher degree of complexity since
the subproblem should also figure out the optimal number
of balls of each color (âj) at the same time as finding the
optimal uniform arrangement.

One practical approach is to postpone the arrangement
of ads within the patterns until the assignment problem is
fully solved. That is, we no longer evaluate the best possible
arrangement of patterns in terms of pacing at the time of
generating the patterns. Instead, we apply an exact or greedy
algorithm, e.g. from (Bollapragada, Bussieck, and Mallik
2004), only on the surviving patterns in the optimal solution
(with already-known frequencies ajn) to evenly pace the ads
before streaming the patterns to user visits.

Numerical Experiments
Prior work in exposure-based guaranteed advertising is
impression-based; that is, it assumes publishers do not
differentiate between serving 2 impressions to 1 person,
or 1 impression each to 2 people. Consequently, there are
no existing benchmarks for comparing the performance
of our algorithm. We tested the algorithm on randomly-
generated graphs that we constructed in such a fashion
to resemble appropriately-scaled3 versions of real-world

3by matching the distribution of parameters (supply and
demand values, density of links between nodes, and θj values).

0

20

40

60

80

100

120

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350

P
a

tt
e

rn
 C

o
u

n
t

M
a

st
e

r
P

ro
b

le
m

 O
b

je
ct

iv
e

Time (seconds)

Master Problem Objective (Ѱ)

Number of New Patterns

Total Patterns in the problem

Figure 3: Performance of the Column Generation Algorithm on a Sample Graph

instances. For example, Figure 3 demonstrates the progress
of the algorithm on a small graph with 40 demand nodes and
300 supply nodes. Each supply node was further partitioned
into 3 subgroups with guaranteed visit lengths of {10, 20,
30} impressions. There are approximately 4600 arcs in
the graph. The horizontal axis shows time (in seconds).
Each vertical dashed line shows an epoch where the master
problem is solved, and the thick black curve tracks the
optimal value of the master problem, denoted Ψ∗, that
decreases each time the master problem is re-solved. In
between the epochs, we solve the subproblems until (at
most) 20 improving patterns were found. The dotted curves
show the cumulative number of new patterns found during
each epoch, and the solid thin curve shows the total number
of patterns existing in the master problem. Throughout the
process, we deleted old unused patterns to keep the total
number of available patterns at each point in time from
growing too quickly. We solved the subproblems in an ad-
hoc (essentially random) order. We used a diversity-seeking
metric of the form (7), and did not use a pacing metric (i.e.
πp(·) = 0). We used the AMPL modeling language with
CPLEX solver on a dual core i5 2.5GHz CPU with 8GB of
RAM to carry out the experiments.

The master problem fully converged to the optimal
solution after 10 iterations (6 minutes), at which point we
solved all 900 subproblems to verify that no improving
pattern existed. As we can see in Figure (3), the
optimal value Ψ∗ initially improves quickly, but the rate
of improvement tapers off, becoming negligible beyond
iteration 6 (2.5 minutes). Note that the subproblems are not
being solved in parallel in our numerical experiment. With
full parallelization, the full convergence could be attained in
less than 1 minute. Moreover, there is a tradeoff between
the number of iterations it takes for the master problem
to converge and the maximum number of new patterns we
aim for during each epoch. With no limit on the number
of new patterns, the above example would converge in 4
iterations; however, 900 subproblems need to be solved in
each iteration, and the total run time happens to be worse
than 6 minutes.

Note that among the possible O
(
1019

)
patterns that can

be constructed for this small instance, only 111 are used

in the final solution4. This illustrates the power of column
generation to isolate only the best patterns. This further
shows that keeping a separate pattern pool for each (w, i)
combination is highly inefficient. If we grouped patterns by
(w, i), we would need to have at least 300×3 = 900 patterns
in the solution (one per each Nwi to be able to access ŝwi).

Finally, we would like to point out that the improvement
in the optimal value of the master problem is not
guaranteed to be monotonically decreasing. For instance,
the improvement in Ψ∗ in iterations 3 and 5 was very low,
whereas a number of patterns were found during iteration
4 which drastically improved the solution. Therefore,
a termination criteria based on the absolute or relative
improvement in Ψ∗ should be used with great caution.

Concluding Remarks
In this paper, we proposed a novel idea for allocating
and serving online advertising: using predetermined fixed-
length streams of ads (which we call patterns). Our
framework introduces a user-level perspective into the
common aggregate modeling of the ad allocation problem.
This enables us to incorporate a variety of features (that are
typically modeled and analysed as separate problems in the
literature) into a single optimization problem. In particular,
our formulation can optimize for representativeness as well
as user-level diversity and pacing of ads, under reach and
frequency requirements. We showed that the problem can
be solved efficiently using a column generation scheme in
which only a (small) set of best patterns are kept in the
problem. In each iteration, we solve a set of optimization
problems to generate new patterns that improve the solution.
Our preliminary numerical tests show that near-optimal
solutions are attained rather quickly with a relatively small
number of patterns. Furthermore, the run time can be
drastically improved by parallelizing the pattern generation
process.

4If we differentiate patterns based on the exact arrangement of
ads within the pattern, we can construct

∑
L 40L = 1.15 × 1048

patterns, given L ∈ {10, 20, 30}. If we differentiate only based on
the number of times each campaign appears in the pattern, we can

construct
∑

L

∑L
c=1

(
40
c

)(
L− 1
c− 1

)
≈ 3.16× 1019 patterns.

References
Abrams, Z.; Keerthi, S. S.; Mendelevitch, O.; and Tomlin,
J. A. 2008. Ad delivery with budgeted advertisers:
A comprehensive LP approach. Journal of Electronic
Commerce Research 9(1).
Araman, V. F., and Fridgeirsdottir, K. 2010. A uniform
allocation mechanism and cost-per-impression pricing for
online advertising. Working paper.
Bharadwaj, V.; Chen, P.; Ma, W.; Nagarajan, C.; Tomlin,
J.; Vassilvitskii, S.; Vee, E.; and Yang, J. 2012. SHALE:
An efficient algorithm for allocation of guaranteed display
advertising. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 1195–1203. ACM.
Bollapragada, S.; Bussieck, M. R.; and Mallik, S. 2004.
Scheduling commercial videotapes in broadcast television.
Operations Research 52(5):679–689.
Desaulniers, G.; Desrosiers, J.; and Solomon, M. M. 2005.
Column generation, volume 5. Springer.
Ghosh, A.; McAfee, P.; Papineni, K.; and Vassilvitskii, S.
2009. Bidding for representative allocations for display
advertising. In Internet and Network Economics. Springer.
208–219.
Kubiak, W., and Sethi, S. 1991. A note on “level schedules
for mixed-model assembly lines in just-in-time production
systems”. Management Science 37(1):121–122.
Langheinrich, M.; Nakamura, A.; Abe, N.; Kamba, T.; and
Koseki, Y. 1999. Unintrusive customization techniques for
web advertising. Computer Networks 31(11):1259–1272.
Nakamura, A., and Abe, N. 2005. Improvements
to the linear programming based scheduling of web
advertisements. Electronic Commerce Research 5(1):75–98.
Turner, J. 2012. The planning of guaranteed targeted display
advertising. Operations Research 60(1):18–33.
Walsh, W. E.; Boutilier, C.; Sandholm, T.; Shields, R.;
Nemhauser, G. L.; and Parkes, D. C. 2010. Automated
channel abstraction for advertising auctions. In AAAI.
Yang, J.; Vee, E.; Vassilvitskii, S.; Tomlin, J.; Shanmugasun-
daram, J.; Anastasakos, T.; and Kennedy, O. 2010. Inventory
allocation for oonline graphical display advertising. arXiv
preprint arXiv:1008.3551.

